Skip to main content
Log in

Brown pigments based on perovskite structure of BiFeO3−δ

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Light brown inorganic pigments based on BiFeO3 doped by Sr2+ cations were prepared by a conventional solid-state reaction at high temperature. This study is focused on the synthesis of Bi1−x Sr x FeO3−δ powders in a range of substitution (x = 0–0.35; with step size 0.05). The main role of strontium is to overcome the defects that come to exist during the evaporation of Bi over material preparation. The substitution of trivalent bismuth ions by divalent strontium ions results in oxygen deficiency in the lattice, which was proved by both thermogravimetric analysis and elemental analysis. The substitution has a positive effect on the thermal stability of samples. The thermal stability of BiFeO3 is 1046 K, whereas the substitution of 20 mol% of Bi3+ by Sr2+ ions shifted it to 1403 K and powder with composition Bi0.65Sr0.35FeO3−δ has a thermal stability that is higher than 1434 K. An increasing range of substitution is connected with the change in the pigment color from reddish-brown to orange-brown and back to reddish-brown. The Bi0.85Sr0.15FeO3−δ pigment prepared by calcination at 1273 K offers the most interesting color properties (L* = 45.57; a* = 20.38; b* = 26.23).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marinova Y, Hohemberger JM, Cordoncillo E, Escribano P, Carda JB. Study of solid solutions with perovskite structure for application in the field of the ceramic pigments. J Eur Ceram Soc. 2003;23:213–20.

    Article  CAS  Google Scholar 

  2. CPMA. Classification and chemical description of the complex inorganic colored pigments. 4th ed. Alexandria: Color Pigments Manufacturers Association, Inc; 2013.

    Google Scholar 

  3. Matskevich NI, Wolf T, Pischur D, Kozlova SG. The heat capacity and thermodynamic functions of Bi12.5Lu1.5ReO24.5 in the temperature range of 175–550 K. J Therm Anal Calorim. 2016;124:1745–8.

    Article  CAS  Google Scholar 

  4. Ivanov MG, Shmakov AN, Drebushchak VA, Podyacheva OY. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z . J Therm Anal Calorim. 2010;100:79–82.

    Article  CAS  Google Scholar 

  5. Matskevich NI, Wolf T, Le Tacon M, et al. Heat capacity on data of DSC calorimetry and thermodynamic functions of barium cerate doped by holmium and indium oxides in the temperature range of 200–700 K. J Therm Anal Calorim. 2017;. https://doi.org/10.1007/s10973-017-6493-z.

    Article  Google Scholar 

  6. Šulcová P, Trojan M. Study of Ce1−x Pr x O2 pigments. Thermochim Acta. 2003;395:251–5.

    Article  Google Scholar 

  7. Bondioli F, Ferrari AM, Lusvarghi L, Manfredini T, Nannerone S, Pasquali L, Selvaggi G. Synthesis and characterization of praseodymium doped ceria powders by a microwave-assisted hydrothermal route. J Mater Chem. 2005;515:1061–6.

    Article  CAS  Google Scholar 

  8. Zhu ZF, Wang BL, Ma JZ. Characterization of Pr-CeO2 nanocrystallites prepared by low-temperature combustion and hydrothermal synthesis. Chin J Struct Chem. 2006;25:1270–4.

    CAS  Google Scholar 

  9. Kumari LS, Prabhakar PR, Reddy MLP. Environment-friendly red pigments from CeO2–Fe2O3–Pr6O11 solid solutions. J Alloys Compd. 2008;461:509–15.

    Article  CAS  Google Scholar 

  10. Olegario RC, Ferreira de Souza EC, Borges M, Flavio J, et al. Synthesis and characterization of Fe3+ doped cerium-praseodymium oxide pigments. Dyes Pigm. 2013;97:113–7.

    Article  CAS  Google Scholar 

  11. Olegario RC, Marimon JB, Antunes MR, Ferreira de Souza EC, Borges JFM, Chaves de Andrade AV, Antunes AC. Synthesis and characterization of CeO2 α-Fe2O3 and CeO2·Pr6O11 ceramic pigments through the solid state reaction and modified sol-gel method. Dyes Pigm. 2014;106:14–9.

    Article  CAS  Google Scholar 

  12. Dohnalová Ž, Šulcová P, Trojan M. Effect of Er3+ substitution on the quality of Mg–Fe spinel pigments. Dyes Pigm. 2009;80:22–5.

    Article  CAS  Google Scholar 

  13. Kalendová A, Ryšánek P, Nechvílová K. Investigation of the anticorrosion efficiency of ferrites Mg1−x Zn x Fe2O4 with different particle morphology and chemical composition in epoxy-ester resin-based coatings. Prog Organ Coat. 2015;86:147–63.

    Article  CAS  Google Scholar 

  14. Bao W, Ma F, Zhang Y, Hao X, Deng Z, Zou X, Gao W. Synthesis and characterization of Fe3+ doped Co0.5Mg0.5Al2O4 inorganic pigments with high near-infrared reflectance. Powder Technol. 2016;292:7–13.

    Article  CAS  Google Scholar 

  15. Han A, Zhou Y, Yang M, Feng S, Du H, Yang R. Near-infrared reflectance and thermal performance of Na2V6O16·xH2O nanoribbon as a novel cool brown pigment. Dyes Pigm. 2015;123:242–7.

    Article  CAS  Google Scholar 

  16. Liu L, Han A, Ye M, Zhao M. Synthesis and characterization of Al3+ doped LaFeO3 compounds: a novel inorganic pigments with high near-infrared reflectance. Sol Energy Mater Sol Cells. 2015;132:377–84.

    Article  CAS  Google Scholar 

  17. Dohnalová Ž, Šulcová P, Trojan M. Synthesis and characterisation of LnFeO3 pigments. J Therm Anal Calorim. 2008;91:559–63.

    Article  CAS  Google Scholar 

  18. Dohnalová Ž, Vontorčíková M, Šulcová P. Characterization of metal oxide-doped lutetium orthoferrite powders from the pigmentary point of view. J Therm Anal Calorim. 2013;113:1223–9.

    Article  CAS  Google Scholar 

  19. Luxová J, Šulcová P, Trojan M. Influence of firing temperature on the color properties of orthoferrite PrFeO3. Thermochim Acta. 2014;579:80–5.

    Article  CAS  Google Scholar 

  20. Opuchovic O, Kreiza G, Senvaitiene J, Kazlauskas K, Beganskiene A, Kareiva A. Sol-gel synthesis, characterization and application of selected sub-microsized lanthanide (Ce, Pr, Nd, Tb) ferrites. Dyes Pigm. 2015;118:176–82.

    Article  CAS  Google Scholar 

  21. James V, Prabhakar PR, Sameera S, Divya S. Multiferroic based reddish brown pigments: Bi1−x M x FeO3 (M = Y and La) for coloring applications. Ceram Int. 2014;40:2229–35.

    Article  CAS  Google Scholar 

  22. Brinkman K, Iijima T, Takamura H. Acceptor doped BiFeO3 ceramics: a new material for oxygen permeation membranes. Jpn J Appl Phys. 2007;46:93–6.

    Article  CAS  Google Scholar 

  23. Navarro MC, Jorge G, Negri M, Saleh Medina LM, Gόmez MI. Synthesis and characterization of Bi1−x Nd x FeO3 (0 ≤ x ≤ 0.3) prepared by thermal decomposition of Bi1−x Nd x [Fe(CN)6]·4H2O. J Therm Anal Calorim. 2015;122:73–80.

    Article  CAS  Google Scholar 

  24. Han L, Wu W, Qu H, Han X, Wang A, Jiao Y, Xu J. Metallic ferrites as flame retardants and smoke suppressants in flexible poly(vinyl chloride). J Therm Anal Calorim. 2016;123:293–300.

    Article  CAS  Google Scholar 

  25. Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjanovic D. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc. 2014;97:1993–2011.

    Article  CAS  Google Scholar 

  26. Fruth V, Tenea E, Gartner M, Anastasescu M, Berger D, Ramer R, Zaharescu M. Preparation of BiFeO3 films by wet chemical method and their characterization. J Eur Ceram Soc. 2007;27:937–40.

    Article  CAS  Google Scholar 

  27. Berbenni V, Milanese Ch, Bruni G, Girella A, Marini A. Mechanical activation of the solid-phase reaction between bismuth citrate and iron(II) oxalate dihydrate to yield BiFeO3. Ceram Int. 2015;41:7216–20.

    Article  CAS  Google Scholar 

  28. Maître A, François M, Gachon JC. Experimental study of the Bi2O3–Fe2O3 pseudo-binary system. J Phase Equilib. 2004;25:59–67.

    Article  Google Scholar 

  29. Palai R, Katiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Catalan G, Scott JF. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys Rev B. 2008;77:014110.

    Article  CAS  Google Scholar 

  30. Scott JF, Palai R, Kumar A, Singh MJK, Murari NM, Karan NK, Katiyar RS. New phase transitions in perovskite oxides: BiFeO3, SrSnO3, and Pb(Fe2/3W1/3)1/2Ti1/2O3. J Am Ceram Soc. 2008;91:1762–8.

    Article  CAS  Google Scholar 

  31. Selbach SM, Einarsrud MA, Grande T. On the thermodynamic stability of BiFeO3. Chem Mater. 2009;21:169–73.

    Article  CAS  Google Scholar 

  32. Li J, Duan Y, He H, Song D. Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J Alloys Compd. 2001;315:259–64.

    Article  CAS  Google Scholar 

  33. Joint Committee on Powder Diffraction Standards. International centre of diffraction data. Swarthmore: JCPDS; 1983.

    Google Scholar 

  34. Commission Internationale de l′Eclairage. Recommendations on uniform colour spaces, colour difference equations, psychometric colopur terms. Supplement no. 2 of CIE publication no. 15 (E1-1,31) 1971, Paris Bureau Central de la CIE; 1978.

  35. Šulcová P, Trojan M. Thermal analysis of the (Bi2O3)1−x (Y2O3) x pigments. J Therm Anal Calorim. 2008;91:151–4.

    Article  CAS  Google Scholar 

  36. Mesíková Ž, Šulcová P, Trojan M. Synthesis and description of SrSn0.6Ln0.4O3 perovskite pigments. J Therm Anal Calorim. 2007;91:163–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Grant Agency of Czech Republic, Project No. 16-06697S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žaneta Dohnalová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohnalová, Ž., Šulcová, P., Bělina, P. et al. Brown pigments based on perovskite structure of BiFeO3−δ . J Therm Anal Calorim 133, 421–428 (2018). https://doi.org/10.1007/s10973-017-6805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6805-3

Keywords

Navigation