Skip to main content
Log in

New phosphorus- and nitrogen-containing poly(methyl methacrylate)-based copolymer

Enhanced flame retardancy and thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pure poly(methyl methacrylate) (PMMA) always exhibits high flammability and low thermal stability. To address that, a novel reactive comonomer containing phosphorus and nitrogen elements, 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) phenyl diethylphosphoramidate (PDM), was successfully synthesized and then introduced into PMMA matrix through emulsion copolymerization method. The structure of PDM and as-obtained poly(MMA-co-PDM) copolymers was characterized using Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance spectroscopy (1H NMR) and 31P NMR. From thermal gravimetric analysis and microscale combustion calorimeter, the poly(MMA-co-PDM) copolymers exhibit significantly enhanced flame retardancy and thermal stability, such as the higher degradation temperatures, and decreased peak heat release rate (maximally by 24.1%) and total heat release (maximally by 22.1%). The glass transition temperature (Tg) values of poly(MMA-co-PDM) copolymers obtained by differential scanning calorimetry slightly decrease as the raising flexibility of polymer chain. The char residue analysis by scanning electron microscopy and FT-IR demonstrates that the incorporation of PDM can catalyze the charring of copolymers in condensed phase and form an excellent thermal stability char residue with aromatic structure, further preventing the inner substrate from further combustion. The detailed mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2016;128(3):1443–51.

    Article  Google Scholar 

  2. Guan Y-H, Huang J-Q, Yang J-C, Shao Z-B, Wang Y-Z. An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res. 2015;54(13):3524–31.

    Article  CAS  Google Scholar 

  3. Wilke A, Langfeld K, Ulmer B, Andrievici V, Hörold A, Limbach P, et al. Halogen-free multi-component flame retardant thermoplastic styrene–ethylene–butylene–styrene elastomers based on ammonium polyphosphate–expandable graphite synergy. Ind Eng Chem Res. 2017;56(29):8251–63.

    Article  CAS  Google Scholar 

  4. Jian R, Wang P, Duan W, Wang J, Zheng X, Weng J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind Eng Chem Res. 2016;55(44):11520–7.

    Article  CAS  Google Scholar 

  5. Zhao B, Chen L, Long J-W, Jian R-K, Wang Y-Z. Synergistic effect between aluminum hypophosphite and alkyl-substituted phosphinate in flame-retarded polyamide 6. Ind Eng Chem Res. 2013;52(48):17162–70.

    Article  CAS  Google Scholar 

  6. Hsieh C-Y, Su W-C, Wu C-S, Lin L-K, Hsu K-Y, Liu Y-L. Benzoxazine-containing branched polysiloxanes: highly efficient reactive-type flame retardants and property enhancement agents for polymers. Polymer. 2013;54(12):2945–51.

    Article  CAS  Google Scholar 

  7. Aubert M, Tirri T, Wilén C-E, François-Heude A, Pfaendner R, Hoppe H, et al. Versatile bis(1-alkoxy-2,2,6,6-tetramethylpiperidin-4-yl)-diazenes (AZONORs) and related structures and their utilization as flame retardants in polypropylene, low density polyethylene and high-impact polystyrene. Polym Degrad Stab. 2012;97(8):1438–46.

    Article  CAS  Google Scholar 

  8. Wazarkar K, Kathalewar M, Sabnis A. Improvement in flame retardancy of polyurethane dispersions by newer reactive flame retardant. Prog Org Coat. 2015;87:75–82.

    Article  CAS  Google Scholar 

  9. Gérard C, Fontaine G, Bourbigot S. New trends in reaction and resistance to fire of fire-retardant epoxies. Materials. 2010;3(8):4476–99.

    Article  Google Scholar 

  10. Tian C, Xu T, Zhang L, Cheng Z, Zhu X. RAFT copolymerization of a phosphorus-containing monomer with α-hydroxy phosphonate and methyl methacrylate. RSC Adv. 2016;6(41):34659–65.

    Article  CAS  Google Scholar 

  11. Du X, Wang S, Du Z, Cheng X, Wang H. Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage. J Mater Chem A. 2018;6(36):17519–29.

    Article  CAS  Google Scholar 

  12. Jiang S, Zhu Y, Hu Y, Chen G, Shi X, Qian X. In situ synthesis of a novel transparent poly(methyl methacrylate) resin with markedly enhanced flame retardancy. Polym Adv Technol. 2016;27(2):266–72.

    Article  CAS  Google Scholar 

  13. Rahman F, Langford KH, Scrimshaw MD, Lester JN. Polybrominated diphenyl ether (PBDE) flame retardants. Sci Total Environ. 2001;275:1–17.

    Article  CAS  Google Scholar 

  14. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  15. Tai Q, Chen L, Song L, Nie S, Hu Y, Yuen RKK. Preparation and thermal properties of a novel flame retardant copolymer. Polym Degrad Stab. 2010;95(5):830–6.

    Article  CAS  Google Scholar 

  16. Jiang J, Li J, Gao Q. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Constr Build Mater. 2015;75:74–81.

    Article  Google Scholar 

  17. Jiang J, Li J, Hu J, Fan D. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Constr Build Mater. 2010;24(12):2633–7.

    Article  Google Scholar 

  18. Aly RO, Mostafa TB, Mokhtar SM. Modification of polyethylene by radiation-induced graft copolymerization of N-phenylmaleimide and p-hydroxy N-phenylmaleimide. Polym Test. 2002;21:857–65.

    Article  CAS  Google Scholar 

  19. Yang S, Wang J, Huo S, Cheng L, Wang M. Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle. Polym Degrad Stab. 2015;119:251–9.

    Article  CAS  Google Scholar 

  20. Nakason C, Sasdipan K, Kaesaman A. Novel natural rubber-g-N-(4-hydroxyphenyl)maleimide: synthesis and its preliminary blending products with polypropylene. Iran Polym J. 2013;23(1):1–12.

    Article  Google Scholar 

  21. Mokhtar SM, Mostafa TB. Gama radiation-induced graft copolymerization of Np-hydroxyphenylmaleimide onto polypropylene films. J Polym Res. 2000;7(4):215–9.

    Article  CAS  Google Scholar 

  22. Mohammed IA, Mustapha A. Synthesis of new azo compounds based on N-(4-hydroxypheneyl)maleimide and N-(4-methylpheneyl)maleimide. Molecules. 2010;15(10):7498–509.

    Article  CAS  Google Scholar 

  23. Saxena K, Bisaria CS, Kalra SJS, Saxena AK. Synthesis of some novel silicone-imide hybrid inorganic–organic polymer and their properties. Prog Org Coat. 2015;78:234–8.

    Article  CAS  Google Scholar 

  24. Shu WJ, Ho JC, Perng LH. Studies of silicon-containing maleimide polymers: 1. Synthesis and characteristics of model compounds. Eur Polym J. 2005;41(1):149–56.

    Article  CAS  Google Scholar 

  25. Reyes-Acosta MA, Torres-Huerta AM, Domínguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ, Ramírez-Meneses E. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd. 2015;643:S150–8.

    Article  CAS  Google Scholar 

  26. Samal R, Sahoo PK. Development of a biodegradable rice straw-g-poly(methyl methacrylate)/sodium silicate composite flame retardant. J Appl Polym Sci. 2009;113(6):3710–5.

    Article  CAS  Google Scholar 

  27. Huang G, Chen S, Song P, Lu P, Wu C, Liang H. Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl Clay Sci. 2014;88–89:78–85.

    Article  Google Scholar 

  28. Chen L, Wang Y-Z. Aryl polyphosphonates: useful halogen-free flame retardants for polymers. Materials. 2010;3(10):4746–60.

    Article  CAS  Google Scholar 

  29. Choi HW, Woo HJ, Hong W, Kim JK, Lee SK, Eum CH. Structural modification of poly(methyl methacrylate) by proton irradiation. Appl Surf Sci. 2001;169–170:433–7.

    Article  Google Scholar 

  30. Junior WS, Emmler T, Abetz C, Handge UA, dos Santos JF, Amancio-Filho ST, et al. Friction spot welding of PMMA with PMMA/silica and PMMA/silica-g-PMMA nanocomposites functionalized via ATRP. Polymer. 2014;55(20):5146–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21704111), the Science and Technology Program of Guangzhou (No. 201806010113), the Financial Support from China Scholarship Council and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saihua Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Jiang, S. & Xiao, L. New phosphorus- and nitrogen-containing poly(methyl methacrylate)-based copolymer. J Therm Anal Calorim 139, 333–342 (2020). https://doi.org/10.1007/s10973-019-08440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08440-0

Keywords

Navigation