Skip to main content
Log in

Diblock copolymers poly(3-hexylthiophene)-block-poly(2-(dimethylamino)ethyl methacrylate-random-1-pyrenylmethyl methacrylate), controlled synthesis and optical properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this research, diblock copolymers based on the rod segment of regioregular poly(3-hexylthiophene) (P3HT) and a coil segment of poly(2-(dimethylamino)ethyl methacrylate-random-1-pyrenylmethyl methacrylate) (P(DMAEMA-r-PyMA)) was synthesized successfully by Grignard metathesis (GRIM) method and atom transfer radical polymerization reaction (ATRP). The obtained copolymer was well-defined with an average molecular weight of 11300 g/mol and low polydispersity below 1.5. The polymer structure was determined via gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H NMR) spectroscopies. In addition, the optical and thermal properties of polymers were characterized via ultraviolet–visible (UV–Vis), differential scanning calorimetry (DSC) spectroscopy and fluorescence spectroscopy. Interestingly, P3HT-b-P(DMAEMA-r-PyMA) was examined as a possible chemosensor for trace detection of the trinitrotoluene (TNT) explosive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. McCullough R, Ewbank P, Skotheim T (1998) Handbook of conducting polymers. Marcel Dekker Inc., New York

    Google Scholar 

  2. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116

    Article  CAS  Google Scholar 

  3. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DD, Giles M, McCulloch I, Ha C-S (2006) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat Mater 5:197–203

    Article  CAS  Google Scholar 

  4. Nalwa HS (1997) Handbook of organic conductive molecules and polymers. Wiley

    Google Scholar 

  5. Abdou MS, Orfino FP, Son Y, Holdcroft S (1997) Interaction of oxygen with conjugated polymers: Charge transfer complex formation with poly (3-alkylthiophenes). J Am Chem Soc 119:4518–4524

    Article  CAS  Google Scholar 

  6. Yang C, Holdcroft S (1997) Thermochromism and band-gap tuning of acrylated poly (3-alkylthiophenes). Synth Met 84:563–564

    Article  CAS  Google Scholar 

  7. Liu Y, Xian K, Zhang X, Gao M, Shi Y, Zhou K, Deng Y, Hou J, Geng Y, Ye L (2022) A mixed-ligand strategy to modulate P3HT regioregularity for high-efficiency solar cells. Macromolecules 55:3078–3086

    Article  CAS  Google Scholar 

  8. Liirò-Peluso L, Wrigley J, Amabilino DB, Beton PH (2022) Submolecular resolution imaging of P3HT:PCBM nanostructured films by atomic force microscopy: implications for organic solar cells. ACS Appl Nano Mater 5:13794–13804

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu J, Sheina E, Kowalewski T, McCullough RD (2002) Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: Nanowire morphologies in new di- and triblock copolymers. Angew Chem Int Ed 41:329–332

    Article  CAS  Google Scholar 

  10. Iovu MC, Sheina EE, Gil RR, McCullough RD (2005) Experimental evidence for the quasi-“living” nature of the grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules 38:8649–8656

    Article  CAS  Google Scholar 

  11. Bui TT, Nguyen TH, Tran HL, Tran CD, Le DT, Dao DN, Nguyen TPL, Nguyen LT, Nguyen L-TT, Nguyen TQ, Cu ST, Hoang MH, Yokozawa T, Nguyen HT (2023) Synthesis of rod–coil conjugated diblock copolymers, poly(3-hexylthiophene)-block-poly(2-(4,6-dichlorotriazin-2-yl]oxy)ethyl methacrylate) and click chemistry. Chem Pap 77:4439–4456

    Article  CAS  Google Scholar 

  12. Kim DY, Cho HN, Kim CY (2000) Blue light emitting polymers. Prog Polym Sci 25:1089–1139

    Article  CAS  Google Scholar 

  13. Zhang J, Li S, Yin Y, Xiang L, Xu F, Mai Y (2022) One-dimensional helical nanostructures from the hierarchical self-assembly of an achiral “rod−coil” alternating copolymer. Macromol Rapid Commun 43:2200437

    Article  CAS  Google Scholar 

  14. Jin S-M, Hwang JH, Lee E (2023) Crystallization-driven solution-state assembly of conjugated block copolymers in materials science. Macromolecules 56:3474–3496

    Article  CAS  Google Scholar 

  15. Mendoza C, Nirwan VP, Fahmi A (2023) Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self-assembly of block copolymers. J Appl Polym Sci 140:e53409

    Article  CAS  Google Scholar 

  16. McCullough RD, Lowe RD (1992) Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Commun 70–72

  17. Loewe RS, Khersonsky SM, McCullough RD (1999) A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using grignard metathesis. Adv Mater 11:250–253

    Article  CAS  Google Scholar 

  18. Jeffries-EL M, Sauvé G, McCullough RD (2004) In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the grignard metathesis polymerization method. Adv Mater 16:1017–1019

    Article  CAS  Google Scholar 

  19. Jeffries-El M, Sauvé G, McCullough RD (2005) Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 38:10346–10352

    Article  CAS  Google Scholar 

  20. Tu T-H, Chan Y-T (2020) Synthesis of terpyridine end-modified polystyrenes through ATRP for facile construction of metallo-supramolecular P3HT-b-PS diblock copolymers. Polymers 12:2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu Y-Y (2010) Synthesis and characterization of poly (3-hexylthiophene)/poly (3-(trimethoxysilyl) propyl rod-coil block copolymers by using atom transfer radical polymerization. J Nanosci Nanotechnol 10:5354–5358

    Article  CAS  PubMed  Google Scholar 

  22. Craley CR, Zhang R, Kowalewski T, McCullough RD, Stefan MC (2009) Regioregular poly (3-hexylthiophene) in a novel conducting amphiphilic block copolymer. Macromol Rapid Commun 30:11–16

    Article  CAS  PubMed  Google Scholar 

  23. Scherf U, Gutacker A, Koenen N (2008) All-conjugated block copolymers. Acc Chem Res 41:1086–1097

    Article  CAS  PubMed  Google Scholar 

  24. Kong X, Jenekhe SA (2004) Block copolymers containing conjugated polymer and polypeptide sequences: Synthesis and self-assembly of electroactive and photoactive nanostructures. Macromolecules 37:8180–8183

    Article  CAS  Google Scholar 

  25. Park S-J, Kang S-G, Fryd M, Saven JG, Park S-J (2010) Highly tunable photoluminescent properties of amphiphilic conjugated block copolymers. J Am Chem Soc 132:9931–9933

    Article  CAS  PubMed  Google Scholar 

  26. Lu S, Fan Q-L, Chua S-J, Huang W (2003) Synthesis of conjugated− ionic block copolymers by controlled radical polymerization. Macromolecules 36:304–310

    Article  CAS  Google Scholar 

  27. Dai C-A, Yen W-C, Lee Y-H, Ho C-C, Su W-F (2007) Facile synthesis of well-defined block copolymers containing regioregular poly (3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J Am Chem Soc 129:11036–11038

    Article  CAS  PubMed  Google Scholar 

  28. Lu S, Liu T, Ke L, Ma D-G, Chua S-J, Huang W (2005) Polyfluorene-based light-emitting rod− coil block copolymers. Macromolecules 38:8494–8502

    Article  CAS  Google Scholar 

  29. Lee E, Hammer B, Kim J-K, Page Z, Emrick T, Hayward RC (2011) Hierarchical helical assembly of conjugated poly (3-hexylthiophene)-block-poly (3-triethylene glycol thiophene) diblock copolymers. J Am Chem Soc 133:10390–10393

    Article  CAS  PubMed  Google Scholar 

  30. Segalman RA, McCulloch B, Kirmayer S, Urban JJ (2009) Block copolymers for organic optoelectronics. Macromolecules 42:9205–9216

    Article  CAS  Google Scholar 

  31. Nguyen D-T, Sharma S, Chen S-A, Komarov PV, Ivanov VA, Khokhlov AR (2021) Polymer–quantum dot composite hybrid solar cells with a bi-continuous network morphology using the block copolymer poly(3-hexylthiophene)-b-polystyrene or its blend with poly(3-hexylthiophene) as a donor. Materials Advances 2:1016–1023

    Article  CAS  Google Scholar 

  32. Cho KY, Kim H-J, Do XH, Seo JY, Hwang SS, Choi DH, Baek K-Y (2019) Potentially self-dopable poly(3-hexylthiophene) block copolymers/carbon nanotube nanocomposites for enhanced processibility and electrical properties. Compos Sci Technol 174:149–157

    Article  CAS  Google Scholar 

  33. García MC (2023) Chapter 17 - Stimuli-responsive self-assembled nanocarriers based on amphiphilic block copolymers for cancer therapy. In: Thomas S, Kalarikkal N, Abraham AR (eds) Applications of Multifunctional Nanomaterials. Elsevier, pp 365–409. https://doi.org/10.1016/B978-0-12-820557-0.00016-3

  34. Smida N, Zaidi B, Althobaiti MG (2023) Anthracene / fluorescein based semi-conducting polymer for organic photovoltaics: Synthesis, DFT, optical and electrical properties. J Mol Struct 1272:134088

    Article  CAS  Google Scholar 

  35. Park IS, Jung Y-S, Lee K-J, Kim J-M (2010) Photoswitching and sensor applications of a spiropyran–polythiophene conjugate. Chem Commun 46:2859–2861

    Article  CAS  Google Scholar 

  36. Liu C-L, Lin C-H, Kuo C-C, Lin S-T, Chen W-C (2011) Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Prog Polym Sci 36:603–637

    Article  CAS  Google Scholar 

  37. Wu W-N, Tu T-H, Pai C-H, Cheng K-H, Tung S-H, Chan Y-T, Liu C-L (2022) Metallo-supramolecular rod-coil block copolymer thin films for stretchable organic field effect transistor application. Macromolecules 55:10670–10681

    Article  CAS  Google Scholar 

  38. Wang X, Zhao C, Li Y, Lin Z, Xu H (2020) A facile and highly efficient route to amphiphilic star-like rod-coil block copolymer via a combination of atom transfer radical polymerization with thiol-ene click chemistry. Macromol Rapid Commun 41:1900540

    Article  CAS  Google Scholar 

  39. Cominetti A, Pellegrino A, Longo L, Po R, Tacca A, Carbonera C, Salvalaggio M, Baldrighi M, Meille SV (2015) Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems. Mater Chem Phys 159:46–55

    Article  CAS  Google Scholar 

  40. Kwon J, Hong J-P, Noh S, Kim T-M, Kim J-J, Lee C, Lee S, Hong J-I (2012) Pyrene end-capped oligothiophene derivatives for organic thin-film transistors and organic solar cells. New J Chem 36:1813–1818

    Article  CAS  Google Scholar 

  41. Sonar P, Soh MS, Cheng YH, Henssler JT, Sellinger A (2010) 1,3,6,8-tetrasubstituted pyrenes: Solution-processable materials for application in organic electronics. Org Lett 12:3292–3295

    Article  CAS  PubMed  Google Scholar 

  42. Yuan Z, Yan J, Gao F, Zhang J, Cheng J (2023) High-performance, fluorescent, UV-shielding, triboelectric, super-flexible polyurea elastomers via strong π-π stacking of pyrene and hydrogen bonding strategies. J Mater Chem C. https://doi.org/10.1039/D3TC00963G

  43. Yan Q, Xu J, Luo M, Lu J, Ren J, Wang S (2023) Pyrene-dithienylethene-tetra(tri)phenylethylene triads: Photocontrolled intramolecular energy transfer and photochromic fluorescence switching. Dyes Pigm 214:111231

    Article  CAS  Google Scholar 

  44. Figueira-Duarte TM, Müllen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111:7260–7314

    Article  CAS  PubMed  Google Scholar 

  45. Cho H, Lee S, Cho NS, Jabbour GE, Kwak J, Hwang D-H, Lee C (2013) High-mobility pyrene-based semiconductor for organic thin-film transistors. ACS Appl Mater Interfaces 5:3855–3860

    Article  CAS  PubMed  Google Scholar 

  46. Feng X, Hu J-Y, Redshaw C, Yamato T (2016) Functionalization of pyrene to prepare luminescent materials—typical examples of synthetic methodology. Chem A Eur J 22:11898–11916

    Article  CAS  Google Scholar 

  47. Wang H, Yu W, Zhang W, Gao C (2014) Decomposition and transformation of pyrene-derivative micelles at intracellular milieu and their influence on cytoviability. Macromol Biosci 14:1748–1754

    Article  CAS  PubMed  Google Scholar 

  48. Senthamizhan A, Celebioglu A, Bayir S, Gorur M, Doganci E, Yilmaz F, Uyar T (2015) Highly fluorescent pyrene-functional polystyrene copolymer nanofibers for enhanced sensing performance of TNT. ACS Appl Mater Interfaces 7:21038–21046

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen TH, Nguyen L-TT, Nguyen VQ, Ngoc Tan Phan L, Zhang G, Yokozawa T, Thuy Thi Phung D, Tran Nguyen H (2018) Synthesis of poly(3-hexylthiophene) based rod–coil conjugated block copolymers via photoinduced metal-free atom transfer radical polymerization. Polym Chem 9:2484–2493

    Article  CAS  Google Scholar 

  50. Nguyen TA, Nguyen TT, Nguyen L-TT, Van Le T, Nguyen HT (2016) Synthesis and optical investigation of amphiphilic diblock copolymers containing regioregular poly(3-hexylthiophene) via post-polymerization modification. Synth Met 217:172–184

    Article  CAS  Google Scholar 

  51. Tran HM, Nguyen L-TT, Nguyen TH, Nguyen HL, Phan NTS, Zhang G, Yokozawa T, Tran HL, Mai PT, Nguyen HT (2019) Efficient synthesis of a rod-coil conjugated graft copolymer by combination of thiol-maleimide chemistry and MOF-catalyzed photopolymerization. Eur Polymer J 116:190–200

    Article  CAS  Google Scholar 

  52. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I (2017) Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 16:363–369

    Article  CAS  PubMed  Google Scholar 

  53. Goracci G, Arbe A, Alegría A, García Sakai V, Rudić S, Schneider GJ, Lohstroh W, Juranyi F, Colmenero J (2015) Influence of solvent on poly(2-(dimethylamino)ethyl methacrylate) dynamics in polymer-concentrated mixtures: a combined neutron scattering, dielectric spectroscopy, and calorimetric study. Macromolecules 48:6724–6735

    Article  CAS  Google Scholar 

  54. Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch FPV, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G (2012) Controllable processes for generating large single crystals of poly(3-hexylthiophene). Angew Chem 51:11131–11135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number 562-2022-20-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Tran Nguyen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 284 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Nguyen, T.P., Bui, T.T., Nguyen, C.H.T. et al. Diblock copolymers poly(3-hexylthiophene)-block-poly(2-(dimethylamino)ethyl methacrylate-random-1-pyrenylmethyl methacrylate), controlled synthesis and optical properties. J Polym Res 30, 292 (2023). https://doi.org/10.1007/s10965-023-03684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03684-9

Keywords

Navigation