Skip to main content
Log in

Significance of alumina in nanofluid technology

An overview

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanotechnology has emerged to be an essential aspect of science and technology. The growth of this field has been enormous specifically in the development of nanomaterials. Till date, numerous nanomaterials have been developed and designed to suit various applications from mechanical to biomedical. Among the developed nanomaterial, alumina (Al) has been subject of interest due to its notable chemical and physical properties. Specifically, in thermal properties, Al has been shown to have superior thermal conductivity, convective heat transfer coefficient and heat transfer coefficient properties. As such, Al has been utilized in different forms in various fields of applications and verified for its importance, significance and efficiency. Though it had shown outstanding results in the field engineering and sciences, their effect towards the environment and human health is yet to be explored extensively. The present paper aims to review the significance of Al nanoparticle addition in mono- and hybrid nanofluids. Also, this paper intends to provide the reader with an overview of the works that have been carried out using Al nanoparticles and their findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure adapted with the permission from Ref. [62], copyright 2009, Elsevier

Fig. 2

Figure adapted with the permission from Ref. [63], copyright 2015, Elsevier

Fig. 3

Figure adapted with the permission from Ref. [64], copyright 2015, Elsevier

Fig. 4
Fig. 5
Fig. 6

Figure adapted with the permission from Ref. [117], copyright 2016, Elsevier

Fig. 7

Reproduced with the permission from Ref. [129], copyright 2017, Elsevier

Fig. 8

Reproduced with the permission from Ref. [165], copyright 2011, Elsevier

Fig. 9

Figure adapted with the permission from Ref. [171], copyright 2017, Elsevier

Fig. 10

Figure adapted with the permission from Ref. [95], copyright 2011, Elsevier

Similar content being viewed by others

Abbreviations

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

FESEM:

Field emission scanning electron microscopy

CHF:

Critical heat flux

VCAM-1:

Vascular cell adhesion protein-1

ICAM-1:

Intercellular adhesion molecule-1

ElAM-1:

Endothelial leucocyte adhesion molecule-1

PWE:

Pulse wire evaporation

DC:

Direct current

nHTF:

Nano-heat transfer fluid

EG:

Ethylene glycol

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

SWCNT:

Single-walled carbon nanotube

NP:

Nanoparticle

PCM:

Phase change material

MEPCM:

Micro-encapsulated phase change material

GnPs:

Graphene nanoplatelets

DI:

Deionized

ANN:

Artificial neural network

OPC:

Ordinary Portland cement

Ni:

Nickle

k :

Thermal conductivity (W m−1 k−1)

M :

Molecular weight (kg kmol−1)

C p :

Specific heat of fluid (J kg−1K−1)

A, B, C, D, b :

Coefficient

T :

Temperature (°C K−1)

t :

Time (s)

q :

Power per unit length

γ :

Gamma

α :

Alpha-thermal diffusivity

θ :

Theta

δ :

Delta

µ, η :

Viscosity (kg m−1 s−1 or N s m−2 or mPa s)

ρ :

Density (kg m−3)

ϕ, φ, f :

Volumetric concentration of particles (%)

nf:

Nanofluid

np or p:

Nanoparticle

hnf:

Hybrid nanofluid

r:

Relative

v:

Volume

f:

Fluid

BF:

Base fluid

w:

Deionized water

References

  1. Reid CB, et al. A study in the mechanical milling of alumina powder. Ceram Int. 2008;34(6):1551–6.

    Article  CAS  Google Scholar 

  2. Bashirnezhad K, Ghavami M, Alrashed AA. Experimental investigations of nanofluids convective heat transfer in different flow regimes: a review. J Mol Liq. 2017;244:309–21.

    Article  CAS  Google Scholar 

  3. Said Z, Saidur R, Rahim N. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod. 2016;133:518–30.

    Article  CAS  Google Scholar 

  4. Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    Google Scholar 

  5. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1.

    Google Scholar 

  6. Ghadimi A, Saidur R, Metselaar H. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17):4051–68.

    Article  CAS  Google Scholar 

  7. Freidoonimehr N, Rashidi MM, Mahmud S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci. 2015;87:136–45.

    Article  CAS  Google Scholar 

  8. Leong KY, et al. Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based nanofluids. Int J Thermophys. 2017;38(5):77.

    Article  CAS  Google Scholar 

  9. Eastman JA, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  10. Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15(6):3271–7.

    Article  CAS  Google Scholar 

  11. Li CH, Peterson G. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99(8):084314.

    Article  CAS  Google Scholar 

  12. Yu W, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  13. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2010:519659.

    Article  Google Scholar 

  14. Ma X, et al. Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int Commun Heat Mass Transf. 2009;36(7):657–60.

    Article  CAS  Google Scholar 

  15. Sara O, et al. Effect of suspended CuO nanoparticles on mass transfer to a rotating disc electrode. Exp Thermal Fluid Sci. 2011;35(3):558–64.

    Article  CAS  Google Scholar 

  16. Namburu PK, et al. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Thermal Fluid Sci. 2007;32(2):397–402.

    Article  CAS  Google Scholar 

  17. Azmi W, et al. Force convection heat transfer of Al2O3 nanofluids for different based ratio of water: ethylene glycol mixture. Appl Therm Eng. 2017;112:707–19.

    Article  CAS  Google Scholar 

  18. Meibodi SS, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5.

    Article  CAS  Google Scholar 

  19. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  20. Garoosi F, et al. Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl Math Comput. 2015;254:183–203.

    Google Scholar 

  21. Yu W, et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 2011;9(2):187–91.

    Article  CAS  Google Scholar 

  22. Murshed S, Leong K, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47(5):560–8.

    Article  CAS  Google Scholar 

  23. Ganvir R, Walke P, Kriplani V. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2016;75:451–60.

    Article  Google Scholar 

  24. Ghanbarpour M, et al. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35.

    Article  CAS  Google Scholar 

  25. Keblinski P, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45(4):855–63.

    Article  CAS  Google Scholar 

  26. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  27. Nagy E, Feczkó T, Koroknai B. Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem Eng Sci. 2007;62(24):7391–8.

    Article  CAS  Google Scholar 

  28. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.

    Article  CAS  Google Scholar 

  29. Kasaeian A, Eshghi AT, Sameti M. A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev. 2015;43:584–98.

    Article  CAS  Google Scholar 

  30. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

    Article  CAS  Google Scholar 

  31. Roy G, et al. Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. Int J Therm Sci. 2012;58:120–9.

    Article  CAS  Google Scholar 

  32. Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12(3):1015–31.

    Article  CAS  Google Scholar 

  33. Li H, Ha C-S, Kim I. Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale Res Lett. 2009;4(11):1384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yarmand H, et al. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    Article  CAS  Google Scholar 

  35. Shiddiky MJ, Torriero AA. Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron. 2011;26(5):1775–87.

    Article  PubMed  CAS  Google Scholar 

  36. Celen A, et al. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–40.

    Article  CAS  Google Scholar 

  37. Akbar NS, Mustafa M. Ferromagnetic effects for nanofluid venture through composite permeable stenosed arteries with different nanosize particles. AIP Adv. 2015;5(7):077102.

    Article  CAS  Google Scholar 

  38. Akbar NS. Biofluidics study in digestive system with thermal conductivity of shape nanosize H2O+ Cu nanoparticles. J Bionic Eng. 2015;12(4):656–63.

    Article  Google Scholar 

  39. Kole M, Dey T. Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Thermal Fluid Sci. 2010;34(6):677–83.

    Article  CAS  Google Scholar 

  40. Kole M, Dey T. Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl Therm Eng. 2013;56(1):45–53.

    Article  CAS  Google Scholar 

  41. Rashidi S, et al. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. J Magn Magn Mater. 2015;378:128–37.

    Article  CAS  Google Scholar 

  42. Zhu H, et al. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett. 2006;89(2):023123.

    Article  CAS  Google Scholar 

  43. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019;343:880–907.

    Article  CAS  Google Scholar 

  44. Arul Prakash F, et al. Toxicity studies of aluminium oxide nanoparticles in cell lines. Int J Nanotechnol Appl. 2011;5:99–107.

    Google Scholar 

  45. Smovzh DV, et al. Synthesis of hollow nanoparticles γ-Al2O3. Adv Nanopart. 2013;2:120–4.

    Article  CAS  Google Scholar 

  46. M’saoubi R, Ruppi S. Wear and thermal behaviour of CVD α-Al2O3 and MTCVD Ti (C, N) coatings during machining. CIRP Ann Manuf Technol. 2009;58(1):57–60.

    Article  Google Scholar 

  47. Ianoş R, Lazău I, Păcurariu C. The influence of combustion synthesis conditions on the α-Al2O3 powder preparation. J Mater Sci. 2009;44(4):1016–23.

    Article  CAS  Google Scholar 

  48. Lin C-Y, Wang J-C, Chen T-C. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration. Appl Energy. 2011;88(12):4527–33.

    Article  CAS  Google Scholar 

  49. Kim K. High energy pulsed plasma arc synthesis and material characteristics of nanosized aluminum powder. Met Mater Int. 2008;14(6):707–11.

    Article  CAS  Google Scholar 

  50. Lei W, et al. Direct synthesis, growth mechanism, and optical properties of 3D AlN nanostructures with urchin shapes. Cryst Growth Des. 2009;9(3):1489–93.

    Article  CAS  Google Scholar 

  51. Ishak NF, et al. Recent progress in the hydrophilic modification of alumina membranes for protein separation and purification. Ceram Int. 2017;43(1):915–25.

    Article  CAS  Google Scholar 

  52. Hosseinabadi SR, et al. Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes. J Membr Sci. 2014;454:496–504.

    Article  CAS  Google Scholar 

  53. Isfahani TD, et al. Mechanochemical synthesis of alumina nanoparticles: formation mechanism and phase transformation. Powder Technol. 2012;229:17–23.

    Article  CAS  Google Scholar 

  54. Bora B, et al. Free-flowing, transparent γ-alumina nanoparticles synthesized by a supersonic thermal plasma expansion process. Curr Appl Phys. 2012;12(3):880–4.

    Article  Google Scholar 

  55. Amirsalari A, Shayesteh SF. Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles. Superlattices Microstruct. 2015;82:507–24.

    Article  CAS  Google Scholar 

  56. Mirjalili F, Hasmaliza M, Abdullah LC. Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram Int. 2010;36(4):1253–7.

    Article  CAS  Google Scholar 

  57. Kavitha R, Jayaram V. Deposition and characterization of alumina films produced by combustion flame pyrolysis. Surf Coat Technol. 2006;201(6):2491–9.

    Article  CAS  Google Scholar 

  58. Trinh DH, et al. Nanocomposite Al2O3–ZrO2 thin films grown by reactive dual radio-frequency magnetron sputtering. Thin Solid Films. 2008;516(15):4977–82.

    Article  CAS  Google Scholar 

  59. Qu L, et al. Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant. Mater Lett. 2005;59(29):4034–7.

    Article  CAS  Google Scholar 

  60. Yatsui K, et al. Synthesis of ultrafine γ-Al2O3 powders by pulsed laser ablation. J Nanopart Res. 2000;2(1):75–83.

    Article  CAS  Google Scholar 

  61. Tok A, Boey F, Zhao X. Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J Mater Process Technol. 2006;178(1):270–3.

    Article  CAS  Google Scholar 

  62. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Thermal Fluid Sci. 2010;34(2):210–6.

    Article  CAS  Google Scholar 

  63. Xu J, Bandyopadhyay K, Jung D. Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol–water mixture. Int J Heat Mass Transf. 2016;94:262–8.

    Article  CAS  Google Scholar 

  64. Modak M, et al. Experimental investigation of heat transfer characteristics of the hot surface using Al2O3–water nanofluids. Chem Eng Process. 2015;91:104–13.

    Article  CAS  Google Scholar 

  65. You S, Kim J, Kim K. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83(16):3374–6.

    Article  CAS  Google Scholar 

  66. Venu H, Madhavan V. Effect of Al2O3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: performance, combustion and emission characteristics. Fuel. 2016;186:176–89.

    Article  CAS  Google Scholar 

  67. Chauhan BS, et al. A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy. 2013;56:1–7.

    Article  CAS  Google Scholar 

  68. Jaichandar S, Annamalai K. Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel. 2012;98:272–9.

    Article  CAS  Google Scholar 

  69. Roy MM, Wang W, Bujold J. Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations. Appl Energy. 2013;106:198–208.

    Article  CAS  Google Scholar 

  70. Liu Y, Yang Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol Energy Mater Sol Cells. 2017;160:18–25.

    Article  CAS  Google Scholar 

  71. Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy. 2013;106:25–30.

    Article  CAS  Google Scholar 

  72. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  73. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.

    Article  CAS  Google Scholar 

  74. Zhou W, et al. Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the presence of magnetic field. Int Commun Heat Mass Transf. 2017;80:1–9.

    Article  CAS  Google Scholar 

  75. Shahmohammadi A, Jafari A. Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Front Chem Sci Eng. 2014;8(3):320–9.

    Article  CAS  Google Scholar 

  76. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018;790:1–48.

    Article  CAS  Google Scholar 

  77. Sheikholeslami M, et al. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  78. Bondarenko DS, et al. Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element. Heatline visualization. Int J Heat Mass Transf. 2019;130:564–74.

    Article  CAS  Google Scholar 

  79. Miroshnichenko IV, et al. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    Article  CAS  Google Scholar 

  80. Togun H, et al. Numerical simulation of heat transfer and separation Al2O3/nanofluid flow in concentric annular pipe. Int Commun Heat Mass Transf. 2016;71:108–17.

    Article  CAS  Google Scholar 

  81. Shahid N, Villate RG, Barron AR. Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos Sci Technol. 2005;65(14):2250–8.

    Article  CAS  Google Scholar 

  82. Habibnejad-Korayem M, Mahmudi R, Poole W. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng A. 2009;519(1):198–203.

    Article  CAS  Google Scholar 

  83. Jiang W, Jin F-L, Park S-J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles. J Ind Eng Chem. 2012;18(2):594–6.

    Article  CAS  Google Scholar 

  84. Lei Z, et al. Thermal expansion of Al matrix composites reinforced with hybrid micro-/nano-sized Al2O3 particles. J Mater Sci Technol. 2014;30(1):61–4.

    Article  CAS  Google Scholar 

  85. Divagar S, Vigneshwar M, Selvamani S. Impacts of nano particles on fatigue strength of aluminum based metal matrix composites for aerospace. Mater Today Proc. 2016;3(10):3734–9.

    Article  Google Scholar 

  86. Heikal M, Ismail M, Ibrahim N. Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr Build Mater. 2015;91:232–42.

    Article  Google Scholar 

  87. Ash B, Schadler L, Siegel R. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett. 2002;55(1–2):83–7.

    Article  CAS  Google Scholar 

  88. Karthikeyan S, Ramamoorthy B. Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni–P coating. Appl Surf Sci. 2014;307:654–60.

    Article  CAS  Google Scholar 

  89. Hu T, et al. Effect of nano Al2O3 particles doping on electromigration and mechanical properties of Sn–58Bi solder joints. Microelectron Reliab. 2015;55(8):1226–33.

    Article  CAS  Google Scholar 

  90. Oesterling E, et al. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett. 2008;178(3):160–6.

    Article  PubMed  CAS  Google Scholar 

  91. Ahmed A, Nadeem S. The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. J Mol Liq. 2016;216:615–23.

    Article  CAS  Google Scholar 

  92. Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med. 2003;34(12):1507–16.

    Article  PubMed  CAS  Google Scholar 

  93. Huang Y-W, Wu C-H, Aronstam RS. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials. 2010;3(10):4842–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Buzea C II, Pacheco K Robbie. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.

    Article  PubMed  Google Scholar 

  95. Dietz K-J, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16(11):582–9.

    Article  PubMed  CAS  Google Scholar 

  96. Hossain Z, et al. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater. 2016;304:291–305.

    Article  PubMed  CAS  Google Scholar 

  97. Wang R-T, Wang J-C. Intelligent dimensional and thermal performance analysis of Al2O3 nanofluid. Energy Convers Manag. 2017;138:686–97.

    Article  CAS  Google Scholar 

  98. Lee GH, et al. Fabrication of Al nano powders by pulsed wire evaporation (PWE) method. J Ind Eng Chem. 2003;9(1):71–5.

    CAS  Google Scholar 

  99. Kim K-D, Lee J-B, Kim HT. Synthesis of titanium dioxide nanoparticles by reversible reaction in semibatch-batch mixed method. J Ind Eng Chem. 2001;7(3):153–9.

    CAS  Google Scholar 

  100. Lee P, et al. Magnetic and gas sensing property of nanosized NiFe2O4 powders synthesized by pulsed wire discharge. J Nanopart Res. 2006;8(1):29.

    Article  CAS  Google Scholar 

  101. Park S, et al. Preparation of conductive nanoink using pulsed-wire-evaporated copper nanoparticles for inkjet printing. Mater Trans. 2012;53(8):1502–6.

    Article  CAS  Google Scholar 

  102. Li Y, et al. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

    Article  CAS  Google Scholar 

  103. Farzaneh H, et al. Stability of nanofluids: molecular dynamic approach and experimental study. Energy Convers Manag. 2016;111:1–14.

    Article  CAS  Google Scholar 

  104. Wang JC, Chiang WC. Researches on thermo-electric properties of seawater and Al2O3 nanofluids. In: Applied mechanics and materials. vol 394. Trans Tech Publications; 2013. p. 14–9.

  105. Sun B, et al. Investigation on the flow and convective heat transfer characteristics of nanofluids in the plate heat exchanger. Exp Thermal Fluid Sci. 2016;76:75–86.

    Article  CAS  Google Scholar 

  106. Philip J, Shima P, Raj B. Nanofluid with tunable thermal properties. Appl Phys Lett. 2008;92(4):043108.

    Article  CAS  Google Scholar 

  107. Shima P, Philip J, Raj B. Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl Phys Lett. 2009;95(13):133112.

    Article  CAS  Google Scholar 

  108. Bernardin M, Comitani F, Vailati A. Tunable heat transfer with smart nanofluids. Phys Rev E. 2012;85(6):066321.

    Article  CAS  Google Scholar 

  109. Philip J, Shima P. Thermal properties of nanofluids. Adv Coll Interface Sci. 2012;183:30–45.

    Article  CAS  Google Scholar 

  110. Raja M, et al. Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev. 2016;64:163–73.

    Article  CAS  Google Scholar 

  111. Murshed S, Leong K, Yang C. Thermal conductivity of nanoparticle suspensions (nanofluids). In: 2006 IEEE conference on emerging technologies-nanoelectronics. 2006. IEEE.

  112. Nguyen C, et al. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47(2):103–11.

    Article  CAS  Google Scholar 

  113. Lee J-H, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51(11):2651–6.

    Article  CAS  Google Scholar 

  114. Lelea D, Laza I. The water based Al2O3 nanofluid flow and heat transfer in tangential microtube heat sink with multiple inlets. Int J Heat Mass Transf. 2014;69:264–75.

    Article  CAS  Google Scholar 

  115. Haridas D, Rajput NS, Srivastava A. Interferometric study of heat transfer characteristics of Al2O3 and SiO2-based dilute nanofluids under simultaneously developing flow regime in compact channels. Int J Heat Mass Transf. 2015;88:713–27.

    Article  CAS  Google Scholar 

  116. Zakaria I, et al. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrogen Energy. 2016;41(9):5096–112.

    Article  CAS  Google Scholar 

  117. Muraleedharan M, et al. Directly absorbing therminol-Al2O3 nano heat transfer fluid for linear solar concentrating collectors. Sol Energy. 2016;137:134–42.

    Article  CAS  Google Scholar 

  118. Aly WI, et al. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng. 2017;110:1294–304.

    Article  CAS  Google Scholar 

  119. Izadi M, Behzadmehr A, Shahmardan MM. Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J Chem Eng. 2014;31(1):12–9.

    Article  CAS  Google Scholar 

  120. Izadi M, et al. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl Phys A. 2014;117(4):1821–33.

    Article  CAS  Google Scholar 

  121. Izadi M, Behzadmehr A, Shahmardan M. Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem Eng Commun. 2015;202(12):1693–702.

    Article  CAS  Google Scholar 

  122. Izadi M, Behzadmehr A, Jalali-Vahida D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int J Therm Sci. 2009;48(11):2119–29.

    Article  CAS  Google Scholar 

  123. Bianco V, Scarpa F, Tagliafico LA. Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renew Energy. 2018;116:9–21.

    Article  CAS  Google Scholar 

  124. Bahrevar M, Jahanfarnia G, Shayesteh M. Thermal-hydraulic analysis of a novel design super critical water reactor with Al2O3 nanofluid as a coolant. J Supercritical Fluids. 2018;140:41–52.

    Article  CAS  Google Scholar 

  125. Al-Waeli AH, et al. Numerical study on the effect of operating nanofluids of photovoltaic thermal system (PV/T) on the convective heat transfer. Case Stud Thermal Eng. 2018;12:405–13.

    Article  Google Scholar 

  126. Barik AK, Rout S, Mukherjee A. Numerical investigation of heat transfer enhancement from a protruded surface by cross-flow jet using Al2O3–water nanofluid. Int J Heat Mass Transf. 2016;101:550–61.

    Article  CAS  Google Scholar 

  127. Fsadni AM, et al. Numerical study on turbulent heat transfer and pressure drop characteristics of a helically coiled hybrid rectangular-circular tube heat exchanger with Al2O3-water nanofluids. Appl Therm Eng. 2017;114:466–83.

    Article  CAS  Google Scholar 

  128. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  129. Ilyas SU, et al. Stability, rheology and thermal analysis of functionalized alumina-thermal oil-based nanofluids for advanced cooling systems. Energy Convers Manag. 2017;142:215–29.

    Article  CAS  Google Scholar 

  130. Yiamsawas T, et al. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    Article  CAS  Google Scholar 

  131. Chougule SS, Sahu S. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts–a comparative study. Chem Eng Process. 2015;88:78–88.

    Article  CAS  Google Scholar 

  132. Azmi W, et al. Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow. Int Commun Heat Mass Transf. 2016;76:24–32.

    Article  CAS  Google Scholar 

  133. Xia G, et al. The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;76:256–64.

    Article  CAS  Google Scholar 

  134. Moghaieb HS, et al. Engine cooling using Al2O3/water nanofluids. Appl Therm Eng. 2017;115:152–9.

    Article  CAS  Google Scholar 

  135. Ghodsinezhad H, Sharifpur M, Meyer JP. Experimental investigation on cavity flow natural convection of Al2O3–water nanofluids. Int Commun Heat Mass Transf. 2016;76:316–24.

    Article  CAS  Google Scholar 

  136. Ghaderian J, et al. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations. Appl Thermal Eng. 2017;121:520–36.

    Article  CAS  Google Scholar 

  137. Gupta HK, Agrawal GD, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Sol Energy. 2015;118:390–6.

    Article  CAS  Google Scholar 

  138. Bellos E, et al. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy. 2016;94:213–22.

    Article  CAS  Google Scholar 

  139. Izadi M, et al. Numerical study of developed laminar mixed convection of Al2O3/water nanofluid in an annulus. Chem Eng Commun. 2013;200(7):878–94.

    Article  CAS  Google Scholar 

  140. Gorjaei AR, Shahidian A. Heat transfer enhancement in a curved tube by using twisted tape insert and turbulent nanofluid flow. J Thermal Anal Calorim. 2019;1:1–10.

    Google Scholar 

  141. Mashaei P, Shahryari M, Madani S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126(2):891–904.

    Article  CAS  Google Scholar 

  142. Raei B, et al. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  143. Dehghani Y, Abdollahi A, Karimipour A. Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. J Thermal Anal Calorim. 2019;135:1–16.

    Article  Google Scholar 

  144. Motevasel M, Nazar ARS, Jamialahmadi M. Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles. J Therm Anal Calorim. 2018;135:133–43.

    Article  CAS  Google Scholar 

  145. Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface. J Thermal Anal Calorim. 2019;135:1–10.

    Article  Google Scholar 

  146. Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res. 2005;7(2–3):265–74.

    Article  CAS  Google Scholar 

  147. Stephen EN, et al. Heat transfer performance of a compact loop heat pipe with alumina and silver nanofluid. J Thermal Anal Calorim. 2018;136:1–12.

    Google Scholar 

  148. Kim S, et al. Experimental investigation of heat transfer coefficient with Al2O3 nanofluid in small diameter tubes. Appl Therm Eng. 2019;146:346–55.

    Article  CAS  Google Scholar 

  149. Bouguerra N, Poncet S, Elkoun S. Dispersion regimes in alumina/water-based nanofluids: simultaneous measurements of thermal conductivity and dynamic viscosity. Int Commun Heat Mass Transf. 2018;92:51–5.

    Article  CAS  Google Scholar 

  150. Ho C, Chang C, Yan W-M. An experimental study of forced convection effectiveness of Al2O3-water nanofluid flowing in circular tubes. Int Commun Heat Mass Transf. 2017;83:23–9.

    Article  CAS  Google Scholar 

  151. Ahmed MS, Hady MRA, Abdallah G. Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Thermal Sci Eng Prog. 2018;5:589–96.

    Article  Google Scholar 

  152. Pan B, et al. Experimental investigation of hypervapotron heat transfer enhancement with alumina–water nanofluids. Int J Heat Mass Transf. 2016;98:738–45.

    Article  CAS  Google Scholar 

  153. Ilyas SU, Pendyala R, Narahari M. An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. Appl Therm Eng. 2017;127:765–75.

    Article  CAS  Google Scholar 

  154. Raei B, Peyghambarzadeh S, Asl RS. Experimental investigation on heat transfer and flow resistance of drag-reducing alumina nanofluid in a fin-and-tube heat exchanger. Appl Therm Eng. 2018;144:926–36.

    Article  CAS  Google Scholar 

  155. Ho C, Chen W. An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng. 2013;50(1):516–22.

    Article  CAS  Google Scholar 

  156. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  157. Esfe MH, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  CAS  Google Scholar 

  158. Sidik NAC, et al. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.

    Article  CAS  Google Scholar 

  159. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50(6):3071–7.

    Article  CAS  Google Scholar 

  160. Batmunkh M, et al. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53(20):8445–51.

    Article  CAS  Google Scholar 

  161. Paul G, et al. Synthesis, characterization, and thermal property measurement of nano-Al95 Zn05 dispersed nanofluid prepared by a two-step process. Int J Heat Mass Transf. 2011;54(15):3783–8.

    Article  CAS  Google Scholar 

  162. Nine MJ, et al. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechnol. 2012;12(6):4553–9.

    Article  PubMed  CAS  Google Scholar 

  163. Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem. 2011;21(26):9702–9.

    Article  CAS  Google Scholar 

  164. Aravind SJ, Ramaprabhu S. Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 2013;3(13):4199–206.

    Article  CAS  Google Scholar 

  165. Suresh S, et al. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388(1):41–8.

    Article  CAS  Google Scholar 

  166. Ho C, et al. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf. 2010;37(5):490–4.

    Article  CAS  Google Scholar 

  167. Ho C, et al. On laminar convective cooling performance of hybrid water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a circular tube. Int J Heat Mass Transf. 2011;54(11):2397–407.

    Article  CAS  Google Scholar 

  168. Bhosale G, Borse S. Pool boiling CHF enhancement with Al2O3-CuO/H2O hybrid nan fluid. IJERT. 2013;2:946–50.

    Google Scholar 

  169. Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci. 2016;72:190–6.

    Article  CAS  Google Scholar 

  170. Jana S, Salehi-Khojin A, Zhong W-H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1):45–55.

    Article  CAS  Google Scholar 

  171. Singh RK, et al. Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J Clean Prod. 2017;20:830–45.

    Article  CAS  Google Scholar 

  172. Han W-S, Rhi S-H. Thermal characteristics of grooved heat pipe with hybrid nanofluids. Thermal Sci. 2011;15(1):195–206.

    Article  Google Scholar 

  173. Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid in an electronic heat sink. IEEE Trans Compon Packag Manuf Technol. 2012;2(10):1600–7.

    Article  CAS  Google Scholar 

  174. Abbasi SM, et al. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39(4):3885–91.

    Article  CAS  Google Scholar 

  175. Nimmagadda R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (). Eur J Mech B Fluids. 2015;52:19–27.

    Article  Google Scholar 

  176. Moghadassi A, Ghomi E, Parvizian F. A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci. 2015;92:50–7.

    Article  CAS  Google Scholar 

  177. Charab AA, Movahedirad S, Norouzbeigi R. Thermal conductivity of Al2O3+TiO2/water nanofluid: model development and experimental validation. Appl Therm Eng. 2017;119:42–51.

    Article  CAS  Google Scholar 

  178. Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.

    Article  CAS  Google Scholar 

  179. Esfe MH, et al. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transf. 2017;82:97–102.

    Article  CAS  Google Scholar 

  180. Kannaiyan S, et al. Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J Mol Liq. 2017;244:469–77.

    Article  CAS  Google Scholar 

  181. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    Article  CAS  Google Scholar 

  182. Allahyar H, Hormozi F, ZareNezhad B. Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp Thermal Fluid Sci. 2016;76:324–9.

    Article  CAS  Google Scholar 

  183. Dardan E, Afrand M, Isfahani AM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  184. Esfe MH, et al. Optimization of MWCNTs (10%)–Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network. Physica A. 2018;512:731–44.

    Article  CAS  Google Scholar 

  185. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  186. Afshari A, et al. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    Article  CAS  Google Scholar 

  187. Yagnem AR, Venkatachalapathy S. Heat transfer enhancement studies in pool boiling using hybrid nanofluids. Thermochim Acta. 2019;672:93–100.

    Article  CAS  Google Scholar 

  188. Moldoveanu GM, et al. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7.

    Article  CAS  Google Scholar 

  189. Maddah H, et al. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102.

    Article  CAS  Google Scholar 

  190. Cabada JC, et al. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmos Environ. 2004;38(20):3127–41.

    Article  CAS  Google Scholar 

  191. Merget R, Rosner G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci Total Environ. 2001;270(1–3):165–73.

    Article  PubMed  CAS  Google Scholar 

  192. Peralta-Videa JR, et al. Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater. 2011;186(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  193. Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39(6):1909–24.

    Article  PubMed  CAS  Google Scholar 

  194. Sharma SS, Dietz K-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009;14(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  195. Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;32(5):577–84.

    Article  PubMed  CAS  Google Scholar 

  196. Meng H, et al. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett. 2007;175(1–3):102–10.

    Article  PubMed  CAS  Google Scholar 

  197. Larsen MR, et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University Malaysia Pahang (UMP) for Grant RDU 180328 and Bangabandhu Science and Technology Fellowship Trust (Bangladesh) for financial assistance and facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azwadi Che Sidik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhana, K., Kadirgama, K., Rahman, M.M. et al. Significance of alumina in nanofluid technology. J Therm Anal Calorim 138, 1107–1126 (2019). https://doi.org/10.1007/s10973-019-08305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08305-6

Keywords

Navigation