Skip to main content
Log in

Co-pyrolysis characteristics of sludge mixed with Zhundong coal and sulphur contaminant release regularity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the pyrolysis characteristics and release of sulphur contaminant were studied under different mass percentages (25%, 50% and 75%) of Zhundong coal in the sample mixtures. The results showed that the yields of volatile products during co-pyrolysis were higher than those calculated from linear combination of corresponding yields of pure sludge and Zhundong coal, which mean that a certain synergistic effect occurs in co-pyrolysis process. The yields of H2S, COS and SO2 decreased with the increase in the content of Zhundong coal in the samples. What’s more, when the content of Zhundong coal were 50%, a great significance on the yields of sulphur contaminant occurs in the process of co-pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mills N, Pearce P, Farrow J, et al. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag. 2014;34(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, Gong Z, Wang Z, et al. A TG–MS study on the coupled pyrolysis and combustion of oil sludge. Thermochim Acta. 2018;663:137–44.

    Article  CAS  Google Scholar 

  3. Chen J, Mu L, Jiang B, et al. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge. Bioresour Technol. 2015;192:1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Xu J, Yu D, Fan B, et al. Characterization of ash particles from co-combustion with a Zhundong coal for understanding ash deposition behavior. Energy Fuels. 2013;28(1):678–84.

    Article  Google Scholar 

  5. Yao Y, Jin J, Liu D, et al. Evaluation of vermiculite in reducing ash deposition during the combustion of high-calcium and high-sodium Zhundong coal in a drop-tube furnace. Energy Fuels. 2016;30(4):3488–94.

    Article  CAS  Google Scholar 

  6. Wang Y, Jin J, Liu D, et al. Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler: focusing on surface temperature effects. Fuel. 2018;216:697–706.

    Article  CAS  Google Scholar 

  7. Tabakaev RB, Astafev AV, Dubinin YV, et al. Autothermal pyrolysis of biomass due to intrinsic thermal decomposition effects. J Therm Anal Calorim. 2018;134(2):1045–57.

    Article  CAS  Google Scholar 

  8. Ozgur E, Miller BG, Miller SF, Kok MV. Thermal analysis of co-firing of oil shale and biomass fuels. Oil Shale. 2012;29:190–201.

    Article  CAS  Google Scholar 

  9. Yang N, Guo H, Liu F, et al. Effects of atmospheres on sulphur release and its transformation behavior during coal thermolysis. Fuel. 2018;215:446–53.

    Article  CAS  Google Scholar 

  10. Jayaraman K, Kok MV, Gokalp I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA–MS. Appl Therm Eng. 2017;125:1446–55.

    Article  CAS  Google Scholar 

  11. Zhang Y, Liang P, Jiao T, et al. Effect of foreign minerals on sulphur transformation in the step conversion of coal pyrolysis and combustion. J Anal Appl Pyrolysis. 2017;127:240–5.

    Article  CAS  Google Scholar 

  12. Folgueras MB, Díaz RM. Influence of FeCl3 and lime added to sludge on sludge-coal pyrolysis. Energy. 2010;35(12):5250–9.

    Article  CAS  Google Scholar 

  13. Chang F, Wang Q, Wang K. Thermogravimetric characteristics and kinetic analysis of co-pyrolysis of sewage sludge and coal. Chin J Environ Eng. 2015;9:2412–8.

    CAS  Google Scholar 

  14. Xiao P, Xu L, Wang X, et al. Co-pyrolysis characteristics of coal and sludge blends using thermogravimetric analysis. Environ Prog Sustain Energy. 2016;34(6):1780–9.

    Article  Google Scholar 

  15. Kok MV, Ozgur E. Characterization of lignocellulose biomass and model compounds by thermogravimetry. Energy Sources. 2017;39(2):6.

    Google Scholar 

  16. Folgueras MB, Díaz RM, Xiberta J, et al. Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel. 2003;82(15):2051–5.

    Article  CAS  Google Scholar 

  17. Weng SF. Fourier transform infrared spectrum analysis. 2nd ed. Beijing: Chemical Industry Press; 2010.

    Google Scholar 

  18. Domínguez A, Menéndez JA, Inguanzo M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol. 2006;97(10):1185–93.

    Article  PubMed  Google Scholar 

  19. Jayaraman K, Kok MV, Gokalp I. Combustion properties and kinetics of different biomass samples using TG–MS technique. J Therm Anal Calorim. 2017;127(2):1361–70.

    Article  CAS  Google Scholar 

  20. Zhu K, Chen L, Ma A, Huang G. Study on the pyrolysis characteristics and kinetics of biomass of the biomass and coal. J Agric Mech Res. 2010;32:202–6.

    Google Scholar 

  21. Domínguez A, Menéndez JA, Pis JJ. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J Anal Appl Pyrolsis. 2006;77(2):127–32.

    Article  Google Scholar 

  22. Li Z, Xu S, Wei Z, et al. Co-pyrolysis of biomass and coal in a free fall reactor. Fuel. 2007;86(3):353–9.

    Article  Google Scholar 

  23. Zhu X, He Q, Hu Y, et al. A comparative study of structure, thermal degradation, and combustion behavior of starch from different plant sources. J Therm Anal Calorim. 2018;132(2):1–9.

    Article  Google Scholar 

  24. Kok MV, Ozgur E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106(2):739–43.

    Article  CAS  Google Scholar 

  25. Cai Z, Ma X, Fang S, et al. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl Therm Eng. 2016;106:938–43.

    Article  CAS  Google Scholar 

  26. Jia X, Wang Q, Cen K, et al. Sulphur transformation during the pyrolysis of coal mixed with coal ash in a fixed bed reactor. Fuel. 2016;177:260–7.

    Article  CAS  Google Scholar 

  27. Wang X, Wang X, Xu S, Xu W, Tan H. Release characteristics of N/S/Cl species during pyrolysis of biomass and coal. J China Coal Soc. 2012;37:426–31.

    Google Scholar 

  28. Weng H, Dai Z, Ji Z, et al. Release and control of hydrogen sulfide during sludge thermal drying. J Hazard Mater. 2015;296:61–7.

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Wei M, Qiao Y, et al. Release of organic sulphur as sulphur-containing gases during low temperature pyrolysis of sewage sludge. Proc Combust Inst. 2015;35(3):2767–75.

    Article  CAS  Google Scholar 

  30. Zhang J, Zuo W, Tian Y, et al. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: effect of operating parameters and mechanism. J Hazard Mater. 2017;331:117.

    Article  CAS  PubMed  Google Scholar 

  31. Xu L, Yang J, Li Y, et al. Behavior of organic sulphur model compounds in pyrolysis under coal-like environment. Fuel Process Technol. 2004;85(8–10):1013–24.

    Article  CAS  Google Scholar 

  32. Baruah BP, Khare P. Pyrolysis of high sulphur Indian coals. Energy Fuels. 2007;21(6):3346–52.

    Article  CAS  Google Scholar 

  33. Liu H, Zhang Q, Hu H, et al. Dual role of conditioner CaO in product distributions and sulphur transformation during sewage sludge pyrolysis. Fuel. 2014;134(9):514–20.

    Article  CAS  Google Scholar 

  34. Karaca S. Desulphurization of a Turkish lignite at various gas atmospheres by pyrolysis. Effect of mineral matter. Fuel. 2003;82(12):1509–16.

    Article  CAS  Google Scholar 

  35. Wang Baofeng, et al. Effect of some natural minerals on transformation behavior of sulphur during pyrolysis of coal and biomass. J Anal Appl Pyrolsis. 2014;105(6):284–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Project in Fundamental Research of Science and Technology Commission of Shanghai Municipality (Grant No. 14JC1404800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Jin, J., Li, S. et al. Co-pyrolysis characteristics of sludge mixed with Zhundong coal and sulphur contaminant release regularity. J Therm Anal Calorim 138, 1623–1632 (2019). https://doi.org/10.1007/s10973-019-08300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08300-x

Keywords

Navigation