Skip to main content
Log in

Low-temperature heat capacity and standard thermodynamic functions of the novel ionic liquid 1-(2-methoxyethyl)-3-ethyl imidazolium perrhenate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ionic liquid 1-(2-methoxyethyl)-3-ethyl imidazolium perrhenate [C22O1IM][ReO4] was prepared in the laboratory firstly, and its structure was confirmed by 1H NMR and 13C NMR. The heat capacities were precisely measured in the temperature range from 78 to 392 K by means of a fully automated adiabatic calorimeter. For [C22O1IM][ReO4], the melting temperature, standard molar heat capacity, molar enthalpy, and molar entropy of solid–liquid phase transition were determined to be (211.826 ± 0.130) K, (142.31 ± 0.34) J K−1 mol−1, (14.382 ± 0.046) kJ mol−1, and (67.93 ± 0.22) J K−1 mol−1, respectively. And the experimental values of molar heat capacities were fitted to a polynomial equation using least square method in the appropriate temperature ranges. The thermodynamic functions (HT − H298.15) and (ST − S298.15) were also obtained from the heat capacity data in the experimental temperature range with an interval of 5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tong B, Liu QS, Tan ZC, Urs WB. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A. 2010;114:3782–7.

    Article  CAS  Google Scholar 

  2. Baudequin C, Bregeon D, Levillain J. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–45.

    Article  CAS  Google Scholar 

  3. Clavier H, Boulanger L, Audi N, Toupet L, Mauduit M, Guillemin JC. Design and synthesis of imidazolinium salts derived from (l)-valine. Investigation of their potential in chiral molecular recognition. Chem Commun. 2004;10:1224–5.

    Article  Google Scholar 

  4. Yoshitaka S, Yoko O, Yasuhisa Y, Kazuya S, Tooru A. Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Phys Chem B. 2006;110:13970–5.

    Article  Google Scholar 

  5. Paulechka YU, Kabo AG, Blokhin AV. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids. J Phys Chem B. 2009;113:14742–6.

    Article  CAS  Google Scholar 

  6. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  CAS  Google Scholar 

  7. Fang DW, Tong J, Guan W, Wang H, Yang JZ. Prediction of the thermodynamic properties of 1-alkyl-3-methylimidazolium lactate ionic liquids [Cnmim][Lact] (n = 2, 3, 4, 5, and 6) by parachor. Sci China Chem. 2010;53:2564–70.

    Article  CAS  Google Scholar 

  8. Currás MR, Gomes MFC, Husson P, Padua AAH, Garcia J. Calorimetric and volumetric study on binary mixtures 2,2,2-trifluoroethanol + (1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate). J Chem Eng Data. 2010;55:5504–12.

    Article  Google Scholar 

  9. Jiang YY, Wang GN, Zhou Z, Wu YT, Geng J, Zhang ZB. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chem Commun. 2008;4:505–7.

    Article  Google Scholar 

  10. Lv XC, Tan ZC, Gao XH, Sun LX. Molar heat capacity and thermodynamic properties of Lu(C5H9NO4)(C3H4N2)6(ClO4)3 5HClO4 10H2O. J Therm Anal Calorim. 2013;113:971–6.

    Article  CAS  Google Scholar 

  11. Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 to 400 K. J Therm Anal Calorim. 2008;92:367–74.

    Article  CAS  Google Scholar 

  12. Earle MJ, McCormac PB, Seddon KR. Diels–Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate–diethyl ether mixtures. Green Chem. 1999;1:23–5.

    Article  CAS  Google Scholar 

  13. Pan Y, Zheng L, Xing NN, Ji HX. The molar surface Gibbs free energy and estimate of polarity for a new ether-functionalized ionic liquid [C22O1IM][DCA]. J Chem Thermodyn. 2017;112:213–9.

    Article  CAS  Google Scholar 

  14. Dupont J, Suarez PAZ, Souza RF, Burrow RA, Kintzinger JP. C—H-π interactions in 1-n-Butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J. 2000;6:2377–81.

    Article  CAS  Google Scholar 

  15. Liu QB, Janssen MHA, Rantwijk F, Sheldon RA. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem. 2005;7:39–42.

    Article  CAS  Google Scholar 

  16. Ditmars DA, Ishihara S, Chang SS, Bernstein G, Wes ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87:159–63.

    Article  CAS  Google Scholar 

  17. Fang DW, Zuo JT, Xia MC, Tong J, Li J. Low-temperature heat capacities and the thermodynamic functions of ionic liquids 1-heptyl-3-methyl imidazolium perrhenate. J Therm Anal Calorim. 2018;132:2003–8.

    Article  CAS  Google Scholar 

  18. Tan ZC, Sun LX, Meng SH, Li L, Zhang JB. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. Chem J Chin Univ. 2002;34:1417 (in Chinese).

    CAS  Google Scholar 

  19. Tan ZC, Sun GY, Song YJ, Wang L, Han JR, Wang M. An adiabatic calorimeter for heat capacity measurement of small samples-the heat capacity of nonlinear optical materials KTiOPO4 and RbTiOAsO4 crystals. Thermochim Acta. 2000;247:252–3.

    Google Scholar 

  20. Tan ZC, Di YY. Review of modern low-temperature adiabatic calorimetry. Prog Chem. 2006;18:1234 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Nature Science Foundation of China NSFC (Nos. 21673107 and 21703090) and Liaoning BaiQianWan Talents Program (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, DW., Gong, L., Fan, XT. et al. Low-temperature heat capacity and standard thermodynamic functions of the novel ionic liquid 1-(2-methoxyethyl)-3-ethyl imidazolium perrhenate. J Therm Anal Calorim 138, 1437–1442 (2019). https://doi.org/10.1007/s10973-019-08295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08295-5

Keywords

Navigation