Skip to main content
Log in

Effect of alkali and alkaline earth metals on co-pyrolysis characteristics of municipal solid waste and biomass briquettes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To investigate the influence of alkali and alkaline earth metals (AAEMs: K, Na, Ca, and Mg) on the co-pyrolysis of municipal solid waste (MSW) and biomass briquettes (CSBs), the pyrolysis properties and products distribution for the blends of pretreated CSBs and MSW were studied by thermogravimetric analysis with Fourier-transform infrared spectroscopy under N2 and CO2 atmospheres. Results showed that the AAEM salts were effective at reducing the initial temperature during pyrolysis process. The presence of AAEM salts inhibited the volatile release rate of the first pyrolysis stage of the blend, while the alkali and alkaline earth salts separately enhanced the volatile release rates of the second and third pyrolysis stages under both atmospheres. Replacement of N2 with CO2 caused lower residual masses of the blend, which were further reduced by the catalytic effect of the AAEM salts. The CO2 yields were enhanced by adding AAEM salts under the N2 atmosphere. Ca had the most obvious catalytic effect on the CO production in the third pyrolysis stage. Different AAEM salts added to the samples displayed different effects on the emissions of alkyl and carbonyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee U, Chung JN, Ingley HA. High-temperature steam gasification of municipal solid waste, rubber, plastic and wood. Energy Fuels. 2014;28(7):4573–87.

    Article  CAS  Google Scholar 

  2. Zhou H, Long Y, Meng AH, Li QH, Zhang YG. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Manag. 2015;38:194–200.

    Article  CAS  Google Scholar 

  3. Fang SW, Yu ZS, Lin Y, Lin YS, Fan YL, Liao YF, Ma XQ. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Appl Therm Eng. 2017;111:292–300.

    Article  CAS  Google Scholar 

  4. Conesa JA, Rey L. Thermogravimetric and kinetic analysis of the decomposition of solid recovered fuel from municipal solid waste. J Therm Anal Calorim. 2015;120(2):1233–40.

    Article  CAS  Google Scholar 

  5. Zhou H, Meng AH, Long YQ, Li QH, Zhang YG. Interactions of municipal solid waste components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis. 2014;108:19–25.

    Article  CAS  Google Scholar 

  6. Yuan H, Wang Y, Kobayashi N, Zhao D, Xing S. Study of fuel properties of torrefied municipal solid waste. Energy Fuels. 2015;29(8):4976–80.

    Article  CAS  Google Scholar 

  7. Lu L, Ismail TM, Jin Y, El-Salam M, Yoshikawa K. Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed. Fuel Process Technol. 2016;154:52–65.

    Article  CAS  Google Scholar 

  8. Chirone R, Salatino P, Scala F, Solimene R, Urciuolo M. Fluidized bed combustion of pelletized biomass and waste-derived fuels. Combust Flame. 2008;155(1–2):21–36.

    Article  CAS  Google Scholar 

  9. Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour Technol. 2010;101(22):8859–67.

    Article  CAS  Google Scholar 

  10. Sonoyama N, Hayashi JI. Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis. Fuel. 2013;114:206–15.

    Article  CAS  Google Scholar 

  11. Zellagui S, Schönnenbeck C, Zouaoui-Mahzoul N, Leyssens G, Authier O, Thunin E, Porcheronb L, Brilhac JF. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace-experimental study and kinetic modeling. Fuel Process Technol. 2016;148:99–109.

    Article  CAS  Google Scholar 

  12. Fang SW, Yu ZS, Lin YS, Hu SC, Liao YF, Ma XQ. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers Manag. 2015;101:626–31.

    Article  Google Scholar 

  13. Chen TJ, Li LY, Zhao RD, Wu JH. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim. 2017;128(3):1825–32.

    Article  CAS  Google Scholar 

  14. Krerkkaiwan S, Fushimi C, Yamamoto H, Tsutsumi A, Kuchonthara P. Influences of heating rate during coal char preparation and AAEMs on volatile-char interaction with different sources of biomass volatile. Fuel Process Technol. 2014;119:10–8.

    Article  CAS  Google Scholar 

  15. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi X, Lim CJ, Ellis N, Grace JR. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel. 2014;117:1204–14.

    Article  CAS  Google Scholar 

  16. Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol. 2010;91(8):903–9.

    Article  CAS  Google Scholar 

  17. Xiu Q, Ma XQ, Yu ZS, Cai ZL. A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry. Appl Therm Eng. 2017;73(1):357–61.

    Article  Google Scholar 

  18. Fahmi R, Bridgwater AV, Darvell LI, Jones JM, Yates N, Thain S, Donnison IS. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel. 2007;86(10–11):1560–9.

    Article  CAS  Google Scholar 

  19. Brown RC, Liu Q, Norton G. Catalytic effects observed during the co-gasification of coal and switchgrass. Biomass Bioenergy. 2000;18(6):499–506.

    Article  CAS  Google Scholar 

  20. Park DK, Kim SD, Lee SH, Lee JG. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour Technol. 2010;101(15):6151–6.

    Article  CAS  Google Scholar 

  21. Fang SW, Yu ZS, Lin Y, Lin YS, Fan YL, Liao YF, Ma XQ. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Bioresour Technol. 2016;209:265–72.

    Article  CAS  Google Scholar 

  22. Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrolysis. 2008;81(1):80–7.

    Article  CAS  Google Scholar 

  23. Gao P, Xue L, Lu Q, Dong CQ. Effects of alkali and alkaline earth metals on N-containing species release during rice straw pyrolysis. Energies. 2015;8(11):13021–32.

    Article  CAS  Google Scholar 

  24. Tang YT, Ma XQ, Lai ZY, Fan YX. Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres. Energy. 2015;90:1066–74.

    Article  CAS  Google Scholar 

  25. Kazanc F, Khatami R, Crnkovic MP, Levendis YA. Emissions of NOx and SO2 from coals of various ranks, bagasse, and coal-bagasse blends burning in O2/N2 and O2/CO2 environments. Energy Fuels. 2011;25(7):2850–61.

    Article  CAS  Google Scholar 

  26. Buah WK, Cunliffe AM, Williams PT. Characterization of products from the pyrolysis of municipal solid waste. Process Saf Environ Prot. 2007;85(5):450–7.

    Article  CAS  Google Scholar 

  27. Lai ZY, Ma XQ, Tang YT, Lin H. Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres. Fuel Process Technol. 2012;102:18–23.

    Article  CAS  Google Scholar 

  28. Yuan JJ, Tu JL, Xu YJ, Qin FGF, Li B, Wang CZ. Thermal stability and products chemical analysis of olive leaf extract after enzymolysis based on TG–FTIR and Py–GC–MS. J Therm Anal Calorim. 2018;132(3):1729–40.

    Article  CAS  Google Scholar 

  29. Burhenne L, Messmer J, Aicher T, Laborie MP. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis. 2013;101(101):177–84.

    Article  CAS  Google Scholar 

  30. Branca C, Blasi CD. A lumped kinetic model for banana peel combustion. Thermochim Acta. 2015;614:68–75.

    Article  CAS  Google Scholar 

  31. Cui H, Yang J, Liu Z. Thermogravimetric analysis of two Chinese used tires. Thermochim Acta. 1999;333(2):173–5.

    Article  CAS  Google Scholar 

  32. Brems A, Baeyens J, Vandecasteele C, Dewil R. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. J Air Waste Manag Assoc. 2011;61(7):721–31.

    Article  CAS  Google Scholar 

  33. Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G. Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol–gel treatments. J Appl Polym Sci. 2011;119(4):1961–9.

    Article  CAS  Google Scholar 

  34. Jiang L, Hu S, Sun LS, Su S, Xu K, He LM, Xiang J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour Technol. 2013;146:254–60.

    Article  CAS  Google Scholar 

  35. Liu GC, Liao YF, Guo SD, Ma XQ, Zeng CC, Wu J. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl Therm Eng. 2016;98:400–8.

    Article  CAS  Google Scholar 

  36. Du Y, Jiang X, Lv G, Ma X, Jin Y, Wang F, Chi Y, Yan J. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis. Energy Convers Manag. 2014;88:459–63.

    Article  CAS  Google Scholar 

  37. Yao ZL, Ma XQ, Wu ZD, Yao TT. TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J Anal Appl Pyrolysis. 2017;123:40–8.

    Article  CAS  Google Scholar 

  38. Shah MA, Khan MNS, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018;134(3):2137–45.

    Article  CAS  Google Scholar 

  39. Ren QQ, Zhao CS, Wu X, Liang C, Chen X, Shen J, Wang Z. TG-FTIR study on co-pyrolysis of municipal solid waste with biomass. Bioresour Technol. 2009;100(17):4054–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Municipal Colleges and Universities Innovation Ability Promotion Projects of Beijing Municipal Education Commission (J2014QTXM0204), National Natural Science Foundation of China (51006031), Science and Technology Project of Anhui Province (2013AKKG0398), Natural Science Research Project of Education Department of Anhui Province and Startup Foundation Project for Doctors of Anhui Jianzhu University (2018QD39).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongling Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xing, X., Ma, P. et al. Effect of alkali and alkaline earth metals on co-pyrolysis characteristics of municipal solid waste and biomass briquettes. J Therm Anal Calorim 139, 489–498 (2020). https://doi.org/10.1007/s10973-019-08278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08278-6

Keywords

Navigation