Skip to main content
Log in

LLM-105 nanoparticles prepared via green ball milling and their thermodynamics and kinetics investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) has drawn extensive attention because of its heat resistance and insensitivity properties. In this study, the LLM-105 nanoparticles were successfully prepared via ball milling method. The milled particles were characterized by scanning electron microscopy, X-ray diffraction, dynamic light scattering, differential scanning calorimetry and thermal sensitivity tests. Moreover, thermodynamics and kinetics parameters of LLM-105 samples were calculated by two kinetics equations. Results show that the milling process can significantly reduce the particle size of LLM-105 and the milling LLM-105 particles have the narrow particle size distribution ranging from 510 to 650 nm. The thermal decomposition peak temperatures of milling LLM-105 are decreased by over 14 °C than those of raw LLM-105 at the same heating rate. The apparent activation energy (Ea) of LLM-105 nanoparticles is calculated as 221.2 kJ mol−1 and 221.4 kJ mol−1 by Kissinger and Starink equation, respectively, which is lower a third than that of raw LLM-105 (339.9 kJ mol−1, 339.7 kJ mol−1). The thermodynamics parameters (ΔS, ΔH, ΔG) of LLM-105 are also decreased in various degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niu H, Chen S, Shu Q, Li LJ, Jin SH. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.

    Article  CAS  PubMed  Google Scholar 

  2. Zou HM, Chen SS, Li X, Shang FQ, Ma X. Thermal behavior and decomposition kinetics of CL-20-based plastic-bonded explosives. J Therm Anal Calorim. 2016;128:1867–73.

    Article  CAS  Google Scholar 

  3. Huang B, Qiao ZQ, Nie FD, Gao MH, Su J, Huang H, Hu CW. Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties. J Hazard Mater. 2010;184:561–6.

    Article  CAS  PubMed  Google Scholar 

  4. Fathollahi M, Mohammadi B, Mohammadi J. Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles. Fuel. 2013;104:95–100.

    Article  CAS  Google Scholar 

  5. Bayat Y, Zarandi M, Zarei MA, Soleyman R, Zeynali V. A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J Mol Liq. 2014;193:83–6.

    Article  CAS  Google Scholar 

  6. Patel VK, Bhattacharya S. High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. ACS Appl Mater Interfaces. 2013;5:13364–74.

    Article  CAS  PubMed  Google Scholar 

  7. Ingale SV, Wagh PB, Tewari R, Gupta SC. Nanocrystalline trinitrotoluene (TNT) using sol–gel process. J Non-Cryst Solids. 2010;356:2162–7.

    Article  CAS  Google Scholar 

  8. Yang GC, Nie FD, Li JH, Li JS, Guo QX, Qiao ZQ. Preparation and characterization of nano-NTO. Propellants Explos Pyrotech. 2010;31:390–4.

    Article  CAS  Google Scholar 

  9. Wang JY, Huang H, Xu WZ, Zhang YR, Lu B, Xie RZ, Wang PY. Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization. J Hazard Mater. 2009;162:842–7.

    Article  CAS  PubMed  Google Scholar 

  10. An CW, Xu S, Zhang YR, Ye BY, Geng XH, Wang JY. Nano-HNS particles: mechanochemical preparation and properties investigation. J Nanomater. 2018;2018:1–7.

    Article  CAS  Google Scholar 

  11. Tarver CM, Urtiew PA, Tran TD. Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J Energy Mater. 2005;23:183–203.

    Article  CAS  Google Scholar 

  12. Weese RK, Burnham AK, Turner HC, Tran TD. Exploring the physical, chemical and thermal characteristics of a new potentially insensitive high explosive RX-55-AE-5. Therm Anal Calorim. 2007;89:465–73.

    Article  CAS  Google Scholar 

  13. Williamson DM, Gymer S, Taylor NE, Walley SM, Jardine AP, Glauser A. Characterisation of the impact response of energetic materials: observation of a low-level reaction in 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). RSC Adv. 2016;6:27896–900.

    Article  CAS  Google Scholar 

  14. Sikder AK, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112:1–15.

    Article  CAS  PubMed  Google Scholar 

  15. Li N, Zhao FQ, Xuan CL, Gao HX, Xiao LB, Yao EG, Qu WG, Hu RZ. Thermochemical properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide in dimethyl sulfoxide and N-methyl pyrrolidone. J Therm Anal Calorim. 2017;127:2511–6.

    Article  CAS  Google Scholar 

  16. Li X, Lin QH, Peng JH, Wang BL. Compatibility study between 2,6-diamino-3,5-dinitropyrazine-1-oxide and some high explosives by thermal and nonthermal techniques. J Therm Anal Calorim. 2017;127:2225–31.

    Article  CAS  Google Scholar 

  17. Huang C, Liu JH, Ding L, Wang DJ, Yang ZJ, Nie FD. Facile fabrication of nanoparticles stacked 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) sub-microspheres via electrospray deposition. Propellants Explos Pyrotech. 2017;43:188–93.

    Article  CAS  Google Scholar 

  18. Zhang J, Wu P, Yang ZJ, Gao B, Zhang JH, Wang P, Nie FD, Liao LY. Preparation and properties of submicrometer-sized LLM-105 via spray-crystallization method. Propellants Explos Pyrotech. 2015;39:653–7.

    Article  CAS  Google Scholar 

  19. Wang Y, Song XL, Song D, Liang L, An CW, Wang JY. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J Hazard Mater. 2016;312:73–83.

    Article  CAS  PubMed  Google Scholar 

  20. Ye B, An CW, Zhang YR, Song CK, Geng XH, Wang JY. One-step ball milling preparation of nanoscale CL-20/graphene oxide for significantly reduced particle size and sensitivity. Nanoscale Res Lett. 2018;13:42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan QL, Zhao FQ, Kuo KK, Zhang XH, Zeman S, Deluca LT. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust. 2016;57:75–136.

    Article  Google Scholar 

  22. Kumar S, Kojima Y, Dey GK. Thermodynamics and kinetics of hydrogen absorption–desorption of highly crystalline LaNi5. J Therm Anal Calorim. 2018;134:889–94.

    Article  CAS  Google Scholar 

  23. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  24. An CW, Li HQ, Guo WJ, Geng XH, Wang JY. Nano cyclotetramethylene tetranitramine particles prepared by a green recrystallization process. Propellants Explos Pyrotech. 2015;39:701–6.

    Article  CAS  Google Scholar 

  25. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian HM. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  PubMed  Google Scholar 

  26. Bao F, Zhang GH, Jin SH, Zhang CY, Niu H. Thermal decomposition and safety assessment of 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) by DTA and ARC. J Therm Anal Calorim. 2018;132:805–11.

    Article  CAS  Google Scholar 

  27. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate Education Innovation Project of North University of China (20181569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwei An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., An, C., Geng, X. et al. LLM-105 nanoparticles prepared via green ball milling and their thermodynamics and kinetics investigation. J Therm Anal Calorim 135, 3303–3309 (2019). https://doi.org/10.1007/s10973-019-08079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08079-x

Keywords

Navigation