Skip to main content
Log in

Thermal analysis and high-temperature X-ray diffraction study of BiNbO4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase transformations of bismuth orthoniobate BiNbO4 were studied by the methods of differential scanning calorimetry and high-temperature X-ray diffraction. The DSC curve in the heating–cooling mode of the orthorhombic samples (α-BiNbO4) showed endothermic and exothermic effects associated with the phase transition from the orthorhombic modification to the triclinic one at the temperatures of ~ 1328 K and ~ 1270 K. This phase transition passed through a high-temperature phase of γ-BiNbO4, in which reflections were indicated in the temperature range of 1323 K → 1353 K → 1263 K. The X-ray diffraction pattern of the sample quenched in air (77 K) and calcined at the temperature from this range, 1323 K, corresponded to the triclinic modification. During the heating, the triclinic modification (β-BiNbO4) was transformed into the high-temperature phase of γ-BiNbO4, which was stable up to ~ 1270 K. Then, it was transformed into the triclinic modification again. The DSC curve of the sample of triclinic BiNbO4 showed endo- and exothermic effects at temperatures of ~ 1274 K and ~ 1270 K associated with the transition into the high-temperature phase of γ-BiNbO4. The cooling of the sample leads to the phase transition from the triclinic to the orthorhombic modification of BiNbO4. Thermostating at 1223 K for 1 h and quenching in air the compact sample or dispersed powder of bismuth orthoniobate of the triclinic modification led to the formation of the orthorhombic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dunke SS, Suslick KS. Photodegradation of BiNbO4 powder during photocatalytic reactions. J Phys Chem C. 2009;113:10341–5.

    Article  CAS  Google Scholar 

  2. Kagata H, Inoue T, Kato J, Kameyama I. Low-fire Bismuth-based dielectric ceramics for microwave use. Jpn J Appl Phys. 1992;31:3152–5.

    Article  CAS  Google Scholar 

  3. Zhou D, Xu C, He D-W, et al. Dielectric properties and phase transitions of BiNbO4 ceramic. Scr Mater. 2014;81:40–3.

    Article  CAS  Google Scholar 

  4. Liu Y, Xu C, He D, et al. Exploring the phase transition of BiNbO4: a high pressure x-ray diffraction study. Solid State Commun. 2008;265:15–8.

    Article  CAS  Google Scholar 

  5. Xu C, He D, Liu C, Wang H, Zhang L, Wang P, Yin S. High pressure and high temperature study the phase transitions of BiNbO4. Solid State Commun. 2013;156:21–4.

    Article  CAS  Google Scholar 

  6. Kim ES, Choi W. Effect of phase transition on the microwave dielectric properties of BiNbO4. J Eur Ceram Soc. 2006;26:1761–6.

    Article  CAS  Google Scholar 

  7. Aurivillius B. X-ray investigations on BiNbO4, BiTaO4 and BiSbO4. Arkiv Kemi. 1951;3:153–61.

    CAS  Google Scholar 

  8. Roth RS, Waring JL. Phase equilibrium relations in binary system bismuth sesquioxide-niobium pentoxide. J Res Natl Bur Stand (US) Phys Chem. 1962;66A:451–8.

    Article  CAS  Google Scholar 

  9. Keve ET, Skapski AC. The structure of triclinic BiNbO4 and BiTaO4. Chem Comm. 1967;0:281–3.

    CAS  Google Scholar 

  10. Keve ET, Skapski AC. The crystal structure of triclinic β-BiNbO4. J Solid State Chem. 1973;8:159–65.

    Article  CAS  Google Scholar 

  11. Subramanian MA, Calabrese JC. Crystal structure of the low temperature form of bismuth niobium oxide. Mater Res Bull. 1993;28:523–9.

    Article  CAS  Google Scholar 

  12. Zhou D, Wang H, Yao X, et al. Phase transformation in BiNbO4 ceramics. Appl Phys Lett. 2007;90:172910.

    Article  CAS  Google Scholar 

  13. Zhai H-F, Qian X, Kong J-Z, et al. Abnormal phase transition in BiNbO4 powders prepared by a citrate method. J Alloy Compd. 2011;509:10230–3.

    Article  CAS  Google Scholar 

  14. Zhuk NA, Yermolina MV, Lutoev VP, Makeev BA, Belyaeva EA, Chezhina NV. Phase transitions and magnetic properties of BiNb1-xFexO4. Ceram Int. 2017;43:16919–23.

    Article  CAS  Google Scholar 

  15. Nevriva M, Kraus H, Sedmidubsky D. Phase equilibria study in the partially open Cu-(0) and Me-Cu-(0) (Me = Ba, Bi, Sr) systems. Thermochim Acta. 1995;282(283):205–24.

    Google Scholar 

  16. Jankovsky O, Sofer Z, Vitek J, Simek P, Ruzicka K, Svoboda P, Sedmidubsky D. Structure, oxygen non-stoichiometry and thermal properties of (Bi0.4Sr0.6)Sr2CoO5–δ. Thermochim Acta. 2015;600:89–94.

    Article  CAS  Google Scholar 

  17. Sedmidubsky D, Nevriva M, Leitner J, Strejc A. Single crystal growth of Bi1−xSrxMnO3–thermodynamics and experiment. Thermochim acta. 2006;450:38–41.

    Article  CAS  Google Scholar 

  18. Tesitelova K, Sulcova P. Synthesis and study of mixed oxide inorganic pigment from Bi2O3–ZnO–CeO2 system. J Therm Anal Calorim. 2017;130:57–62.

    Article  CAS  Google Scholar 

  19. Basaran C, Toplan N, Ozkan Toplan H. The crystallization kinetics of the Bi2O3-added MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste. J Therm Anal Calorim. 2018;134:313–21.

    Article  CAS  Google Scholar 

  20. Dohnalová Ž, Šulcová P, Bělina P, Vlček M, Gorodylova N. Brown pigments based on perovskite structure of BiFeO3−δ. J Therm Anal Calorim. 2018;133:421–8.

    Article  CAS  Google Scholar 

  21. Akselrud LG, Grin YN, Zavalij PY, et al. CSD-universal program package for single crystal or powder structure data treatment. Thes Rep XII Eur Crystallogr Meet 1989. p. 155.

  22. Jankovsky O, Sedmidubsky D, Sofer Z, Capek J, Ruzicka K. Thermal properties and homogenity range of Bi24+xCo2-xO39 ceramics. Ceram Silik. 2013;57:83–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the X-ray Diffraction Center of SPSU for providing instrumental and computational resources. M.G.K. thanks Saint Petersburg State University for financial support (Grant No 3.42.741.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zhuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, N.A., Makeev, B.A., Belyy, V.A. et al. Thermal analysis and high-temperature X-ray diffraction study of BiNbO4. J Therm Anal Calorim 137, 1513–1518 (2019). https://doi.org/10.1007/s10973-019-08070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08070-6

Keywords

Navigation