Skip to main content
Log in

Thermal conversion of tobacco stem into gaseous products

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis of tobacco stem (TS), a potential source of lignocellulosic biomass, is investigated, focusing on gas formation via thermogravimetric analysis–mass spectrometry to obtain accurate gaseous product distributions under various conditions. The results revealed that the majority of the gaseous products were formed under 900 K with a shoulder pyrolysis region (600–800 K) as the main source of gas formation, where the formation curve of CO2 was used to track the pyrolysis of hemicellulose, cellulose, and lignin. The formation of four aromatics from lignin occurred over the range of 500–900 K, roughly in the sequence of phenol, toluene, xylene, and benzene. Furthermore, the demineralization of TS with HCl did not lead to optimal results, with increased phenol and decreased syngas production, whereas pretreatment with NaOH for hydrolysis was found to significantly increase methane production and decrease the amount of aromatics formed, suggesting that this method should lead to superior results and a simpler reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dan X, Yuankai S, Chen W. Tobacco in China. Lancet. 2014;383:2045–6.

    Article  PubMed  Google Scholar 

  2. Mumba P, Phiri R. Environmental impact assessment of tobacco waste disposal. Int J Environ Res. 2008;2:225–30.

    CAS  Google Scholar 

  3. de Lucas A, Cañizares P, García MA, Gómez J, Rodríguez JF. Recovery of nicotine from aqueous extracts of tobacco wastes by an H + -form strong-acid ion exchanger. Ind Eng Chem Res. 1998;37:4783–91.

    Article  Google Scholar 

  4. Li Z, Huang D, Tang Z, Deng C, Zhang X. Fast determination of chlorogenic acid in tobacco residues using microwave-assisted extraction and capillary zone electrophoresis technique. Talanta. 2010;82:1181–5.

    Article  CAS  PubMed  Google Scholar 

  5. Ding M, Wei B, Zhang Z, She S, Huang L, Ge S, Sheng L. Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim. 2017;129:975–84.

    Article  CAS  Google Scholar 

  6. Gao W, Chen K. Physical properties and thermal behavior of reconstituted tobacco sheet with precipitated calcium carbonate added in the coating process. Cellulose. 2017;24:2581–90.

    Article  CAS  Google Scholar 

  7. Prabowo H, Martono E, Witjaksono W. Activity of liquid smoke of tobacco stem waste as an ibsecticide on Spodoptera litura Fabricius larvae. Indones J Plant Protect. 2017;20:22–7.

    Google Scholar 

  8. Qi B, Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol. 2008;99:5595–601.

    Article  CAS  PubMed  Google Scholar 

  9. Ma XC, Li LQ, Chen RF, Wang CH, Zhou K, Li HL. Porous carbon materials based on biomass for acetone adsorption: effect of surface chemistry and porous structure. Appl Surf Sci. 2018;459:657–64.

    Article  CAS  Google Scholar 

  10. Zhao GH, Feng YJ, Yu YL, Li ZM. Evaluation of stability and maturity during tobacco industrial solid waste composting. Adv Mater Res. 2014;1010–1012:956–60.

    Article  CAS  Google Scholar 

  11. Saithep N, Dheeranupatana S, Sumrit P, Jeerat S, Boonchalearmkit S, Wongsanoon J, Jatisatienr C. Composting of tobacco plant waste by manual turning and forced aeration system. Maejo Int J Sci Technol. 2009;3:248–60.

    CAS  Google Scholar 

  12. Meher K, Panchwagh A, Rangrass S, Gollakota K. Biomethanation of tobacco waste. Environ Pollut. 1995;90:199–202.

    Article  CAS  PubMed  Google Scholar 

  13. Polat S, Apaydin-Varol E, Pütün AE. Thermal decomposition behavior of tobacco stem Part I: TGA–FTIR–MS analysis. Energy Source Part A. 2016;38:3065–72.

    Article  CAS  Google Scholar 

  14. Polat S, Apaydin-Varol E, Pütün AE. Thermal decomposition behavior of tobacco stem Part II: kinetic analysis. Energy Source Part A. 2016;38:3073–80.

    Article  CAS  Google Scholar 

  15. Czernik S, Bridgwater A. Overview of applications of biomass fast pyrolysis oil. Energy Fuel. 2004;18:590–8.

    Article  CAS  Google Scholar 

  16. Zhang Q, Chang J, Wang TJ, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag. 2007;48:87–92.

    Article  CAS  Google Scholar 

  17. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen. 2011;407:1–19.

    Article  CAS  Google Scholar 

  18. Hossain AK, Davies PA. Pyrolysis liquids and gases as alternative fuels in internal combustion engines: a review. Renew Sustain Energy Rev. 2013;21:165–89.

    Article  CAS  Google Scholar 

  19. Sohi SP, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv Agron. 2010;105:47–82.

    Article  CAS  Google Scholar 

  20. Samira B, Nurhidayatullaili MuhdJ. Biomass-derived activated carbon: synthesis, functionalized, and photocatalysis application. In: Tawfik AS, editor. Advanced nanomaterials for water engineering, treatment, and hydraulics. Hershey: IGI Global; 2017. p. 162–99.

    Google Scholar 

  21. Basu P. Biomass gasification and pyrolysis: practical design and theory. Cambridge: Academic Press; 2010.

    Google Scholar 

  22. Wang K, Kim KH, Brown RC. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014;16:727–35.

    Article  CAS  Google Scholar 

  23. Carvalheiro F, Duarte LC, Gírio FM. Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res India. 2008;67:849–64.

    CAS  Google Scholar 

  24. Long J, Song H, Jun X, Sheng S, Lun-shi S, Kai X, Yao Y. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresour Technol. 2012;116:278–84.

    Article  CAS  PubMed  Google Scholar 

  25. Nkemka VN, Li Y, Hao X. Effect of thermal and alkaline pretreatment of giant Miscanthus and Chinese fountaingrass on biogas production. Water Sci Technol. 2015;75:849–56.

    Google Scholar 

  26. Wang S, Ru B, Lin H, Dai G, Wang Y, Luo Z. Kinetic study on pyrolysis of biomass components: a critical review. Curr Org Chem. 2016;20:2489–513.

    CAS  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  28. Cai J, Wu W, Liu R, Huber GW. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15:1331–40.

    Article  CAS  Google Scholar 

  29. Bruzs B. Velocity of thermal decomposition of carbonates. J Phys Chem. 1926;30(5):680–93.

    Article  CAS  Google Scholar 

  30. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Symp. 1964;6:183–95.

    Article  Google Scholar 

  31. Sung YJ, Seo YB. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim Acta. 2009;486:1–4.

    Article  CAS  Google Scholar 

  32. Strezov V, Popovic E, Filkoski RV, Shah P, Evans T. Assessment of the thermal processing behavior of tobacco waste. Energy Fuel. 2012;26:5930–5.

    Article  CAS  Google Scholar 

  33. Long J, Song H, Sun LS, Sheng S, Kai X, He LM, Xiang J. Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour Technol. 2013;146:254–60.

    Article  CAS  Google Scholar 

  34. Oh GH, Yun CH, Park CR. Role of KOH in the one-stage KOH activation of cellulosic biomass. Bioorg Med Chem Lett. 2003;24:4999–5007.

    Google Scholar 

  35. Domínguez A, Menéndez J, Inguanzo M, Pis J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol. 2006;97:1185–93.

    Article  CAS  PubMed  Google Scholar 

  36. Köseoğlu E, Akmil-Başar C. Preparation structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol. 2015;26:811–8.

    Article  CAS  Google Scholar 

  37. Zhao D, Dai Y, Feng G, Yang J, Song J, She X. Chemical composition and fiber morphology of tobacco stem, scrap and dust. Tob Sci Technol. 2016;49:36–44.

    CAS  Google Scholar 

  38. Oja V, Hajaligol MR, Waymack BE. The vaporization of semi-volatile compounds during tobacco pyrolysis. J Anal Appl Pyrol. 2006;76:117–23.

    Article  CAS  Google Scholar 

  39. Kastanaki E, Vamvuka D, Grammelis P, Kakaras E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process Technol. 2002;77–78:159–66.

    Article  Google Scholar 

  40. Nowakowski DJ, Jones JM, Brydson RMD, Ross AB. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel. 2007;86:2389–402.

    Article  CAS  Google Scholar 

  41. Le Brech Y, Ghislain T, Leclerc S, Bouroukba M, Delmotte L, Brosse N, Snape C, Chaimbault P, Dufour A. Effect of potassium on the mechanisms of biomass pyrolysis studied using complementary analytical techniques. Chemsuschem. 2016;9:863–72.

    Article  CAS  PubMed  Google Scholar 

  42. Shimada N, Kawamoto H, Saka S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis. J Anal Appl Pyrol. 2008;81:80–7.

    Article  CAS  Google Scholar 

  43. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  44. Wang S, Ru B, Dai G, Sun W, Qiu K, Zhou J. Pyrolysis mechanism study of minimally damaged hemicellulose polymers isolated from agricultural waste straw samples. Bioresour Technol. 2015;190:211–8.

    Article  CAS  PubMed  Google Scholar 

  45. Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182:120–7.

    Article  CAS  PubMed  Google Scholar 

  46. Wu M, Xue J, Li Q, Tai D, Li T. Estimation of non-cyclic α-aryl ether units in wood and gramineous lignins. J Cell Sci Technol. 1995;3:32–9.

    CAS  Google Scholar 

  47. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology Support Program of China (2015BAL04B02), the National Natural Science Foundation of China (No. 21376274), the Collaborative Innovation Center of Building Energy Conservation and Environmental Control, and the Graduate Self-Exploration and Innovation Program of Central South University (2017zzts168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, L., Chen, R. et al. Thermal conversion of tobacco stem into gaseous products. J Therm Anal Calorim 137, 811–823 (2019). https://doi.org/10.1007/s10973-019-08010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08010-4

Keywords

Navigation