Skip to main content
Log in

Energy saving in automotive air conditioning system performance using SiO2/PAG nanolubricants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of automotive air conditioning (AAC) nowadays is essential because of the hot climate and global warming. The AAC increases the overall fuel consumption in order to cool down the car cabin, hence releases more CO2 into the atmosphere. Nanotechnology can be implemented into the lubricant of the AAC compressor which can aid in reducing the power consumption. Therefore, this paper investigates the effect of SiO2/PAG nanolubricants on the AAC performance and energy saving. The SiO2/PAG nanolubricants were prepared using the two-step method. The sedimentation observation and UV–Vis spectrophotometer evaluation confirmed the stability of the nanolubricants. The tribology analysis revealed the coefficient of friction of SiO2/PAG nanolubricants better than the original PAG lubricants. The performance parameters and power consumption (energy saving) of AAC system using SiO2/PAG nanolubricants were compared with PAG lubricants. The condenser pressure and the pressure ratio of the AAC system decreased by an average of 10.8% and 5.6%, respectively. The volumetric heat absorb increased up to 3% and the coefficient of performance increased by an average of 21%. The compressor work and power consumption of the AAC system reduced by 16.5% and 4%, respectively. As a conclusion, it was recommended to use 0.05% volume concentration of SiO2/PAG nanolubricants in AAC compressor for optimum system performance and energy saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \bar{A} \) :

Final absorbance

\( \bar{A}_{\text{o}} \) :

Initial absorbance

\( \bar{A}_{\text{r}} \) :

Absorbance ratio

A/C:

Air conditioning

AAC:

Automotive air conditioning

Al2O3 :

Aluminium oxide

COP:

Coefficient of performance

COF:

Coefficient of friction

CO2 :

Carbon dioxide

CNT:

Carbon nanotube

Cp:

Specific heat for water at 30–40 °C

EDM:

Electrical discharge machining

FESEM:

Field emission scanning electron microscopy

HFC:

Hydrofluorocarbon

m :

Mass (kg)

\( \dot{m} \) :

Water mass flow rate

\( \dot{m}_{\text{r}} \) :

Refrigerant mass flow rate

MO:

Mineral oil

m RC :

Initial refrigerant charge (g)

n :

Number of sample

PAG:

Polyalkylene glycol

Q L :

Heat absorb (kJ kg−1)

\( \dot{Q}_{\text{L}} \) :

Cooling capacity (kW)

POE:

Polyolester

RAC:

Resident air conditioning

RPM:

Revolution per minute

RSE:

Relative standard error (%)

S err :

Standard error

SiO2 :

Silicon dioxide

SAE:

Society of Automotive Engineers

T :

Temperature (°C)

TEM:

Transmission electron microscopy

W in :

Compressor work (kJ kg−1)

W eff :

Power consumption (kW)

V L :

Volumetric heat absorb

V S :

Specific volume at the suction port

ϕ :

Volume concentration (%)

ρ :

Density (kg m−3)

σ :

Standard deviation for sample

L :

Lubricant

P :

Nanoparticle

References

  1. Emadi A, Lee YJ, Rajashekara K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans Ind Electron. 2008;55(6):2237–45.

    Article  Google Scholar 

  2. Statista. Number of passenger cars and commercial vehicles in use worldwide from 2006 to 2015. Online: The Statistics Portal; 2017.

  3. Solomon S. Climate change 2007—the physical science basis: contribution of Working Group I to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  4. Chapman L. Transport and climate change: a review. J Transp Geogr. 2007;15(5):354–67.

    Article  Google Scholar 

  5. Abdolbaqi MK, Sidik NAC, Aziz A, Mamat R, Azmi WH, Yazid MNAWM, et al. An experimental determination of thermal conductivity and viscosity of BioGlycol/water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;77:22–32.

    Article  CAS  Google Scholar 

  6. Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf. 2014;59:30–8.

    Article  CAS  Google Scholar 

  7. Xian HW, Sidik NAC, Aid SR, Ken TL, Asako Y. Review on preparation techniques, properties and performance of hybrid nanofluid in recent engineering applications. J Adv Res Fluid Mech Therm Sci. 2018;45(1):1–13.

    Google Scholar 

  8. Zakaria I, Azmi WH, Mamat AMI, Mamat R, Saidur R, Abu Talib SF, et al. Thermal analysis of Al2O3–water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrog Energy. 2016;41(9):5096–112.

    Article  CAS  Google Scholar 

  9. Hamid KA, Azmi WH, Mamat R, Usri NA, Najafi G. Effect of temperature on heat transfer coefficient of titanium dioxide in ethylene glycol-based nanofluid. J Mech Eng Sci. 2015;8:1367–75.

    Article  CAS  Google Scholar 

  10. Yusri IM, Mamat R, Najafi G, Razman A, Awad OI, Azmi WH, et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew Sustain Energy Rev. 2017;77:169–81.

    Article  CAS  Google Scholar 

  11. Khdher AM, Sidik NAC, Hamzah WAW, Mamat R. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf. 2016;73:75–83.

    Article  CAS  Google Scholar 

  12. Kean TH, Sidik NAC, Asako Y, Ken TL, Aid SR. Numerical study on heat transfer performance enhancement of phase change material by nanoparticles: a review. J Adv Res Fluid Mech Therm Sci. 2018;45(1):55–63.

    Google Scholar 

  13. Pillay DS, Sidik NAC. Tribological properties of biodegradable nano-lubricant. J Adv Res Fluid Mech Therm Sci. 2017;33(1):1–13.

    Google Scholar 

  14. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Zawawi NNM. Comparative study of thermo-physical properties of SiO2 and Al2O3 nanoparticles dispersed in PAG lubricant. Appl Therm Eng. 2017;116:823–32.

    Article  CAS  Google Scholar 

  15. Choi US. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows. New York: American Society of Mechanical Engineers (ASME); 1995. p. 99–105.

    Google Scholar 

  16. Sharif MZ, Azmi WH, Mamat R, Shaiful AIM. Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants—a review. Int Commun Heat Mass Transf. 2018;92:56–63.

    Article  CAS  Google Scholar 

  17. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R. Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transf. 2016;76:285–93.

    Article  CAS  Google Scholar 

  18. Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transf. 2013;46:142–7.

    Article  CAS  Google Scholar 

  19. Redhwan AAM, Azmi WH, Sharif MZ, Zawawi NNM. Thermal conductivity enhancement of Al2O3 and SiO2 nanolubricants for application in automotive air conditioning (AAC) system. MATEC Web Conf. 2016;90:01051.

    Article  CAS  Google Scholar 

  20. Sayuti M, Sarhan AAD, Salem F. Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod. 2014;67:265–76.

    Article  CAS  Google Scholar 

  21. Wan Q, Jin Y, Sun P, Ding Y. Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng. 2015;102:1038–45.

    Article  CAS  Google Scholar 

  22. Wang RX, Hao B, Xie GZ, Li HQ. A refrigerating system using HFC134a and mineral lubricant appended with n-TiO2 (R) as working fluids. In: 4th International Symposium on HAVC. Beijing: Tsinghua University Press; 2003. p. 888–92.

  23. Bi SS, Shi L, Zhang LL. Application of nanoparticles in domestic refrigerators. Appl Therm Eng. 2008;28(14):1834–43.

    Article  CAS  Google Scholar 

  24. Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. Int J Refrig. 2010;33(2):347–58.

    Article  CAS  Google Scholar 

  25. Kumar RR, Sridhar K, Narasimha M. Heat transfer enhancement in domestic refrigerator using R600a/mineral oil/nano-Al2O3 as working fluid. Int J Comput Eng Res. 2013;3(4):42–51.

    Google Scholar 

  26. Kedzierski MA. Effect of diamond nanolubricant on R134a pool boiling heat transfer. J Heat Transf. 2012;134(5):051001.

    Article  CAS  Google Scholar 

  27. Fujimoto S, Sakitani K, Watada M, editors. Tribology analysis in rolling piston type compressor. In: International compressor engineering conference. Purdue University; 1984.

  28. Cabello R, Sánchez D, Llopis R, Arauzo I, Torrella E. Experimental comparison between R152a and R134a working in a refrigeration facility equipped with a hermetic compressor. Int J Refrig. 2015;60:92–105.

    Article  CAS  Google Scholar 

  29. Kumar DS, Elansezhian R. Experimental study on Al2O3–R134a nano refrigerant in refrigeration system. Int J Mod Eng Res. 2012;2(5):3927–9.

    Google Scholar 

  30. Kumar DS, Elansezhian R. ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment. Front Mech Eng. 2014;9(1):75–80.

    Article  Google Scholar 

  31. Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53(21–22):4607–18.

    Article  CAS  Google Scholar 

  32. Sharif MZ, Azmi WH, Redhwan AAM, Zawawi NMM. Preparation and stability of silicone dioxide dispersed in polyalkylene glycol based nanolubricants. MATEC Web Conf. 2017;90:1–9.

    Article  CAS  Google Scholar 

  33. Brown WL. Polyalkylene glycols. CRC Handb Lubr Tribol. 1993;3:253–67.

    Google Scholar 

  34. Dow. Material safety data sheet. Ucon Refrigerant Lubricant 213. 2013.

  35. Sakinah MH, Amirruddin AK, Kadirgama K, Ramasamy D, Rahman MM, Noor MM. The application of response surface methodology in the investigation of the tribological behavior of palm cooking oil blended in engine oil. Adv Tribol. 2016;2016:1–11.

    Article  CAS  Google Scholar 

  36. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Sharma KV. Thermo-physical properties of Al2O3–SiO2/PAG composite nanolubricant for refrigeration system. Int J Refrig. 2017;80:1–10.

    Article  CAS  Google Scholar 

  37. Redhwan AAM, Azmi WH, Sharif MZ, Hagos FY. Development of nanolubricant automotive air conditioning (AAC) test rig. MATEC Web Conf. 2017;90:01050.

    Article  Google Scholar 

  38. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54(17–18):4051–68.

    Article  CAS  Google Scholar 

  39. Lin L, Peng H, Ding G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl Therm Eng. 2015;91:163–71.

    Article  CAS  Google Scholar 

  40. Beer A. Determination of the absorption of red light in colored liquids. Annu Rev Phys Chem. 1852;86(5):78–88.

    Article  Google Scholar 

  41. Lambert JH, DiLaura DL. Photometry, or, on the measure and gradations of light, colors, and shade: translation from the Latin of photometria, sive, de mensura et gradibus luminis, colorum et umbrae. Illuminating Engineering Society of North America; 2001.

  42. Chung SJ, Leonard JP, Nettleship I, Lee J-K, Soong Y, Martello DV, et al. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194(1):75–80.

    Article  CAS  Google Scholar 

  43. Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—a review. Renew Sustain Energy Rev. 2017;69:415–28.

    Article  CAS  Google Scholar 

  44. Yu PY, Chang YC. Influence of lubricant viscosity of POES on the performance of hermetic reciprocating compressors. In: International compressor engineering conference; Purdue e-Pubs: Purdue University; 2002. p. 1–7.

  45. Hundy GH, Trott AR, Welch TC. Refrigeration and air-conditioning. 4th ed. UK: Butterworth-Heinemann; 2008.

    Google Scholar 

  46. King GR. Modern refrigeration practice. New York: McGraw Hill; 1971.

    Google Scholar 

  47. Manske KA, Reindl DT, Klein SA. Evaporative condenser control in industrial refrigeration systems. Int J Refrig. 2001;24(7):676–91.

    Article  Google Scholar 

  48. Ratts EB, Brown JS. An experimental analysis of the effect of refrigerant charge level on an automotive refrigeration system. Int J Therm Sci. 2000;39(5):592–604.

    Article  Google Scholar 

  49. Joudi KA, Mohammed ASK, Aljanabi MK. Experimental and computer performance study of an automotive air conditioning system with alternative refrigerants. Energy Convers Manag. 2003;44(18):2959–76.

    Article  CAS  Google Scholar 

  50. Lou JF, Zhang H, Wang R. Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Adv Mech Eng. 2015;7(2):1687814015571011.

    Article  Google Scholar 

  51. Sabareesh RK, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigation. Int J Refrig. 2012;35(7):1989–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Universiti Malaysia Pahang (www.ump.edu.my) and the Automotive Engineering Centre (AEC) for financial supports given under RDU1603110. This research also partially supported by UMP Flagship Research Grant under RDU172204. The authors also thank the research team from Advanced Fluids Focus Group (AFFG) and Advanced Automotive Liquids Laboratory (A2LL), who provided insight and expertise that greatly assisted in the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Azmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M.Z., Azmi, W.H., Redhwan, A.A.M. et al. Energy saving in automotive air conditioning system performance using SiO2/PAG nanolubricants. J Therm Anal Calorim 135, 1285–1297 (2019). https://doi.org/10.1007/s10973-018-7728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7728-3

Keywords

Navigation