Skip to main content
Log in

Performance evaluation of novel refrigerant mixtures in an air conditioning system using Al2O3 nanolubricant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current global warming challenges have drawn refrigerants with low Global Warming Potential (GWP). R32 (difluoromethane) is the most promising low-GWP refrigerant and is slightly flammable. The addition of a flame retardant to HFC-32 can improve its flammability. Trifluoroiodomethane (R13I1) is a flame retardant with an extremely low GWP that can be employed as a refrigerant component. This experimental study investigates the effect of dispersing aluminium oxide (Al2O3) nanoparticles in the compressor oil with varying concentrations of 0.045, 0.09, 0.135, and 0.18 vol% in the Polyol Ester (POE) oil on its thermal, tribological, and rheological properties as well as on the overall performance of a vapour compression air conditioning system using ultra-low GWP mixture refrigerants consisting of R32, R161, and R13I1 as the working fluid. The thermophysical properties of the mixture refrigerant have been calculated using REFPROP (NIST properties of fluid reference). The mixture refrigerant (R32/R161/R13I1) performed better in alumina nanolubricant and the comparison has been made with reference to the base lubricant (POE) in terms of power consumption, COP, coefficient of friction, and cooling capacity. The results showed that the coefficient of performance (COP) and cooling capacity increased by 32.6% and 11.7%, respectively. The maximum power saving is up to 16.1%, and the coefficient of friction is reduced by 32.4%. The highest recorded thermal conductivity reached 22.5% at 343.15 K and a volume concentration of 0.18%, compared to base oil at 303.15 K. The air conditioning system’s performance showed improvement at an optimal concentration of 0.135 vol%. This study provides valuable insights into identifying energy-efficient and low-GWP refrigerant alternatives suitable for air conditioning systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Refrigeration is of paramount importance for mankind and must become a priority for policy makers, pp 1–12, 2019. https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy-2019-142028

  2. Thormundsson B Air-conditioning: share of worldwide units 2016, by region. https://www.statista.com/statistics/910969/worldwide-air-conditioning-unit-share-region/

  3. The Montreal Protocol on Substances that Deplete the Ozone Layer 1987. https://ozone.unep.org/treaties/montreal-protocol

  4. I.-P. E. supported by A. Research, 2017. https://www.ashrae.org/technical-resources/ashrae-handbook

  5. Dilawar M, Qayoum A. Performance study of aluminium oxide based nanorefrigerant in an air-conditioning system. Res Eng Struct Mater. 2022;9(1):147–62. https://doi.org/10.17515/resm2022.459ma0701.

    Article  Google Scholar 

  6. Zhang N, Dai Y, Feng L. and Li B Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system. Chin J Chem Eng. 2021. https://doi.org/10.1016/j.cjche.2021.02.028.

    Article  PubMed  Google Scholar 

  7. Yu B, Ouyang H, Shi J, Guo Z, Chen J. Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems. Int J Refrig. 2021;129:118–27. https://doi.org/10.1016/j.ijrefrig.2021.04.037.

    Article  CAS  Google Scholar 

  8. Farhana K, et al. Significance of alumina in nanofluid technology: an overview. J Therm Anal Calorim. 2019;138(2):1107–26. https://doi.org/10.1007/s10973-019-08305-6.

    Article  CAS  Google Scholar 

  9. Narayanasarma S, Kuzhiveli BT. Evaluation of the properties of POE/SiO2 nanolubricant for an energy-efficient refrigeration system—an experimental assessment. Powder Technol. 2019;356:1029–44. https://doi.org/10.1016/j.powtec.2019.09.024.

    Article  CAS  Google Scholar 

  10. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64. https://doi.org/10.1016/S0142-727X(99)00067-3.

    Article  CAS  Google Scholar 

  11. Gulzar O, Qayoum A, Gupta R. Experimental study on thermal conductivity of mono and hybrid Al2O3–TiO2 nanofluids for concentrating solar collectors. Int J Energy Res. 2021;45(3):4370–84. https://doi.org/10.1002/er.6105.

    Article  CAS  Google Scholar 

  12. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2018;53:101174. https://doi.org/10.1016/j.jddst.2019.101174.

    Article  CAS  Google Scholar 

  13. Sharma B, Sharma SK, Gupta SM, Kumar A. Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. Arab J Sci Eng. 2018;43(11):6155–63. https://doi.org/10.1007/s13369-018-3345-5.

    Article  CAS  Google Scholar 

  14. Gulzar O, Qayoum A, Gupta R. Experimental study on stability and rheological behaviour of hybrid Al2O3–TiO2 Therminol-55 nanofluids for concentrating solar collectors. Powder Technol. 2019;352:436–44. https://doi.org/10.1016/j.powtec.2019.04.060.

    Article  CAS  Google Scholar 

  15. Gulzar O, Qayoum A, Gupta R. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors. Appl Nanosci (Switzerland). 2019;9(5):1133–43. https://doi.org/10.1007/s13204-018-0738-4.

    Article  CAS  Google Scholar 

  16. Shafi WK, Charoo MS. Experimental study on rheological properties of vegetable oils mixed with titanium dioxide nanoparticles. J Braz Soc Mech Sci Eng. 2019;41(10):n1-13. https://doi.org/10.1007/s40430-019-1905-6.

    Article  CAS  Google Scholar 

  17. Ali MKA, Xianjun H. Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol Rev. 2015;4(4):347–58. https://doi.org/10.1515/ntrev-2015-0031.

    Article  CAS  Google Scholar 

  18. Bhat AY, Qayoum A. Viscosity of CuO Nanofluids: experimental Investigation and Modelling with FFBP-ANN. Thermochim Acta. 2022;2022:179267. https://doi.org/10.1016/j.tca.2022.179267.

    Article  CAS  Google Scholar 

  19. He W, et al. Using of artificial neural networks (ANNs) to predict the thermal conductivity of zinc oxide-silver (50%–50%)/water hybrid Newtonian nanofluid. Int Commun Heat Mass Transf. 2020;116:104645. https://doi.org/10.1016/j.icheatmasstransfer.2020.104645.

    Article  CAS  Google Scholar 

  20. Boroomandpour A, Toghraie D, Hashemian M. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids. Synth Metals. 2020;268:116501. https://doi.org/10.1016/j.synthmet.2020.116501.

    Article  CAS  Google Scholar 

  21. Yan SR, Toghraie D, Abdulkareem LA, Alizadeh A, Barnoon P, Afrand M. The rheological behavior of MWCNTs–ZnO/Water–ethylene glycol hybrid non-Newtonian nanofluid by using of an experimental investigation. J Market Res. 2020;9(4):8401–6. https://doi.org/10.1016/j.jmrt.2020.05.018.

    Article  CAS  Google Scholar 

  22. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136(3):1333–45. https://doi.org/10.1007/s10973-018-7826-2.

    Article  CAS  Google Scholar 

  23. Deokar PS, Cremaschi L. Effect of nanoparticle additives on the refrigerant and lubricant mixtures heat transfer coefficient during in-tube single-phase heating and two-phase flow boiling. Int J Refrig. 2020;110:142–52. https://doi.org/10.1016/j.ijrefrig.2019.10.018.

    Article  CAS  Google Scholar 

  24. Akkaya M. Usage of graphene-doped tin oxide hybrid nanocomposites in compressor and electromagnetic modeling for single-phase compressor motor. Arab J Sci Eng. 2022. https://doi.org/10.1007/s13369-022-07116-6.

    Article  Google Scholar 

  25. Yilmaz AC. Performance evaluation of a refrigeration system using nanolubricant. Appl Nanosci (Switzerland). 2020;10(5):1667–78. https://doi.org/10.1007/s13204-020-01258-5.

    Article  CAS  Google Scholar 

  26. Krishna Sabareesh R, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigation. Int J Refrig. 2012;35(7):1989–96. https://doi.org/10.1016/j.ijrefrig.2012.07.002.

    Article  CAS  Google Scholar 

  27. Dilawar M, Qayoum A. Simulation of vapour compression air conditioning system using al2o3 based nanofluid refrigerant. J Therm Eng. 2022;2128(1):050023.

    Google Scholar 

  28. Ahmed MI, Ahamed JU. TiO2 nanolubricant: an approach for performance improvement in a domestic air conditioner. Results in Materials. 2021;13:100255. https://doi.org/10.1016/j.rinma.2022.100255.

    Article  CAS  Google Scholar 

  29. Chroo M, Wani MF. Tribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring. Lubr Sci. 2016;29(4):241–54. https://doi.org/10.1002/ls.1366.

    Article  CAS  Google Scholar 

  30. Adelekan, et al. Performance of a domestic refrigerator in varying ambient temperatures, concentrations of TiO2 nanolubricants and R600a refrigerant charges. Heliyon. 2021;7(2):06156. https://doi.org/10.1016/j.heliyon.2021.e06156.

    Article  CAS  Google Scholar 

  31. Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear. 2007;262(7–8):819–25. https://doi.org/10.1016/j.wear.2006.08.021.

    Article  CAS  Google Scholar 

  32. Ozsipahi M, Kose HA, Kerpicci H, Gunes H. Experimental study of R290/R600a mixtures in vapor compression refrigeration system. Int J Refrig. 2021;133:247–58. https://doi.org/10.1016/j.ijrefrig.2021.10.004.

    Article  CAS  Google Scholar 

  33. Ali B, Qayoum A, Saleem S, Mir FQ. Synthesis and characterization of high-quality multi layered graphene by electrochemical exfoliation of graphite. Res Eng Struct Mater. 2022. https://doi.org/10.17515/resm2022.384na0121.

    Article  Google Scholar 

  34. Yang S, Cui X, Zhou Y, Chen C. Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. Int J Refrig. 2020;110:187–95. https://doi.org/10.1016/j.ijrefrig.2019.11.008.

    Article  CAS  Google Scholar 

  35. Kedzierski MA. Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface. Int J Refrig. 2015;49:36–48. https://doi.org/10.1016/j.ijrefrig.2014.09.012.

    Article  CAS  Google Scholar 

  36. Corumlu V, Ozsoy A, Ozturk M. Evaluation of heat transfer mechanisms in heat pipe charged with nanofluid. Arab J Sci Eng. 2019;44(6):5195–213. https://doi.org/10.1007/s13369-019-03742-9.

    Article  CAS  Google Scholar 

  37. Ahamed JU, Saidur R, Masjuki HH. Investigation of environmental and heat transfer analysis of air conditioner using hydrocarbon mixture compared to R-22. Arab J Sci Eng. 2014;39(5):4141–50. https://doi.org/10.1007/s13369-014-0961-6.

    Article  CAS  Google Scholar 

  38. Urmi WT, Rahman MM, Hamzah WAW. An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2–Al2O3 hybrid nanofluids. Int Commun Heat Mass Transf. 2020;220:116. https://doi.org/10.1016/j.icheatmasstransfer.2020.104663.

    Article  CAS  Google Scholar 

  39. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci. 2009;33(4):706–14. https://doi.org/10.1016/j.expthermflusci.2009.01.005.

    Article  CAS  Google Scholar 

  40. Kavusi H, Toghraie D. A comprehensive study of the performance of a heat pipe by using of various nanofluids. Adv Powder Technol. 2017;28(11):3074–84. https://doi.org/10.1016/j.apt.2017.09.022.

    Article  CAS  Google Scholar 

  41. Marcucci Pico DF, da Silva LRR, Hernandez Mendoza OS, Bandarra Filho EP. Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. Int J Heat Mass Transf. 2020;152:119493. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Qayoum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilawar, M., Qayoum, A. Performance evaluation of novel refrigerant mixtures in an air conditioning system using Al2O3 nanolubricant. J Therm Anal Calorim 148, 11929–11943 (2023). https://doi.org/10.1007/s10973-023-12471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12471-z

Keywords

Navigation