Skip to main content
Log in

Ethylethanolammonium 4-nitrobenzoate

Synthesis, structural characterization, thermal analysis, non-isothermal kinetic investigations and corrosion inhibitor efficiency

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2018

This article has been updated

Abstract

The demand for corrosion inhibitors with low toxicity has increased in the last years in a wide range of sectors. Our study presents the synthesis, X-ray structure, thermal and kinetic investigation of ethylethanolammonium 4-nitrobenzoate (EEA4NB) as corrosion inhibitor for iron in 3% NaCl solution. Proton transfer and hydrogen bonding in the organic salt were elucidated and confirmed by infrared spectroscopy and single-crystal X-ray diffraction. Simultaneous TGA–DTA and heat flow analysis were used to study the thermal and kinetic behavior of EEA4NB. The results provided useful information about thermal stability and thermal decomposition. The non-isothermal kinetic parameters were estimated by using three different kinetic methods. Electrochemical corrosion measurements show corrosion inhibitor efficiency of EEA4NB for iron in 3% NaCl solution higher than 92% and a decrease of corrosion current and corrosion rate as a result of adsorption of EEA4NB molecules at the metal/solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 11 June 2018

    The author group was published incompletely in the original publication. The complete author group is given in this erratum. The original article has been corrected.

References

  1. Khaled KF. Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions. Appl Surf Sci. 2010;256:6753–63.

    Article  CAS  Google Scholar 

  2. Li C, Li L, Wang C. Study of the inhibitive effect of mixed self-assembled monolayers on copper with SECM. Electrochim Acta. 2014;115:531–6.

    Article  CAS  Google Scholar 

  3. Behpour M, Ghoreishi SM, Soltani N, Salavati-Niasari M, Hamadanian M, Gandomi A. Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci. 2008;50:2172–81.

    Article  CAS  Google Scholar 

  4. Behpour M, Ghoreishi SM, Soltani N, Salavati-Niasari M. The inhibitive effect of some bis-N, S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution. Corros Sci. 2009;51:1073–82.

    Article  CAS  Google Scholar 

  5. Behpour M, Ghoreishi SM, Mohammadi N, Soltani N, Salavati-Niasari M. Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corros Sci. 2010;52:4046–57.

    Article  CAS  Google Scholar 

  6. Behpour M, Ghoreishi SM, Gandomi-Niasar A, Soltani N, Salavati-Niasari M. The inhibition of mild steel corrosion in hydrochloric acid media by two Schiff base compounds. J Mater Sci. 2009;44:2444–53.

    Article  CAS  Google Scholar 

  7. Behpour M, Ghoreishi SM, Salavati-Niasari M, Mohammadi N. Corrosion protection of copper by TiO2 nanoparticles and SN Schiff base coating. J Nanostruct. 2012;2:317–26.

    Google Scholar 

  8. Behpour M, Ghoreishi SM, Salavati-Niasari M, Ebrahimi B. Evaluating two new synthesized S-N Schiff bases on the corrosion of copper in 15% hydrochloric acid. Mater Chem Phys. 2008;107:153–7.

    Article  CAS  Google Scholar 

  9. Eddy NO, Momoh-Yahaya H, Oguzie EE. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminium in 0.1 M HCl. J Adv Res. 2015;6:203–17.

    Article  CAS  PubMed  Google Scholar 

  10. Vaysburd AM, Emmons PH. Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts. Cem Concr Compos. 2004;26:255–63.

    Article  CAS  Google Scholar 

  11. Söylev TA, Richardson MG. Corrosion inhibitors for steel in concrete: state-of-the-art report. Constr Build Mater. 2008;22:609–22.

    Article  Google Scholar 

  12. Gaidis JM. Chemistry of corrosion inhibitors. Cem Concr Compos. 2004;26:181–9.

    Article  CAS  Google Scholar 

  13. Liu JZ, Zhao D, Cai JS, Shi L, Liu JP. Arylaminoalcohols as corrosion inhibitors for carbon steel in chloride-contaminated simulated concrete pore solution. Int J Electochem Sci. 2016;11:1135–51.

    CAS  Google Scholar 

  14. Song HW, Saraswathy V. Corrosion monitoring of reinforced concrete structures—a review. Int J Electochem Sci. 2007;2:1–28.

    Google Scholar 

  15. Ormellese M, Lazzari L, Goidanich S, Fumagilli G, Brenna A. A study of organic substances as inhibitors for chloride-induced corrosion in concrete. Corros Sci. 2009;51:2959–68.

    Article  CAS  Google Scholar 

  16. Chicu SA, Herrmann K, Berking S. An approach to calculate the toxicity of simple organic molecules on the basis of QSAR analysis in H. echinata. Quant Struct Act Relatsh. 2000;19:227–36.

    Article  CAS  Google Scholar 

  17. Chicu SA, Grozav M, Kurunczi L, Crisan M. SAR for amine salts of carboxylic acids to Hydractinia echinata test system. Rev Chim. 2008;59:582–7.

    CAS  Google Scholar 

  18. Gibellini F, Smith TK. The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62:414–28.

    Article  CAS  PubMed  Google Scholar 

  19. Crisan M, Halip L, Bourosh P, Chicu SA, Chumakov Y. Synthesis, structure and toxicity evaluation of ethanolamine nitro/chloronitrobenzoates: a combined experimental and theoretical study. Chem Cent J. 2017;11:129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sibel Z. The effects of benzoic acid in chloride solutions on the corrosion of iron and aluminum. Turk J Chem. 2002;26:403–8.

    Google Scholar 

  21. Amiery AAA, Kassim FAB, Kadhum AAH, Mohamad AB. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid. Sci Rep. 2016;6:19890.

    Article  CAS  Google Scholar 

  22. Rani ABE, Basu BBJ. Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros. 2012;2012:Article ID 380217.

  23. Vyazovkin S. Model-free kinetics-staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  24. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  25. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  27. Crisan M, Vlase G, Szerb EI, Vlase T. Thermal and kinetics studies of primary, secondary and tertiary alkanolammonium salts of 4-nitrobenzoic acid. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6975-7.

    Article  Google Scholar 

  28. Sempere J, Nomen R, Serra R, Soravilla J. The NPK method: an innovative approach for kinetic analysis of data from thermal analysis and calorimetry. Thermochim Acta. 2002;388:407–14.

    Article  CAS  Google Scholar 

  29. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  30. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  31. Chumakov YM, Simonov Y, Grozav M, Crisan ME, Bocelli G, Yakovenko AA, Lyubetsky D. Hydrogen-bonding network in the organic salts of 4-nitrobenzoic acid. Cent Eur J Chem. 2006;4:458–75.

    CAS  Google Scholar 

  32. Crisan ME, Bourosh P, Chumakov YM, Petric M, Ilia G. Supramolecular assembly and Ab initio quantum chemical calculations of 2-hydroxyethylammonium salts of para-substituted benzoic acids. Cryst Growth Des. 2013;13:143–54.

    Article  CAS  Google Scholar 

  33. Crisan ME, Bourosh P, Maffei ME, Forni A, Pieraccini S, Sironi M, Chumakov YM. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid. PLoS ONE. 2014;9:e101892.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dinnappa RK, Mayanna SM. Benzoic acid and substituted benzoic acids as interfacial corrosion inhibitors for copper in HClO4. J Appl Electrochem. 1981;11:111–6.

    Article  CAS  Google Scholar 

  35. Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:112–22.

    Article  CAS  Google Scholar 

  36. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8.

    Google Scholar 

  37. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39:453–7.

    Article  CAS  Google Scholar 

  38. Hu XG, Zhang HM, Tu B, Fang YY, Jin ZM. [2-Hydroxy-1,1-bis(hydroxymethyl)ethyl]-bis(2-hydroxyethyl)ammonium 4-nitrobenzoate monohydrate. Acta Cryst. 2006;E62:o1276–8.

    Google Scholar 

  39. Broker GA, Tiekink ERT. Bis[ethyl(2-hydroxyethyl)azanium] 2,2′-disulfanediyldibenzoate. Acta Cryst. 2010;E66:o705.

    Google Scholar 

  40. Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy: a guide for students of organic chemistry. 3rd ed. Andover: Tomson Learning; 2001.

    Google Scholar 

  41. Silverstein RM, Webster FX. Spectrometric identification of organic compounds. 7th ed. Hoboken: Wiley; 1998.

    Google Scholar 

  42. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:635–8.

    Article  CAS  Google Scholar 

  43. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition step. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  44. Vlase G, Bolcu C, Modra D, Budiul MM, Ledeţi I, Albu P, Vlase T. Thermal behavior of phthalic anhydride-based polyesters. J Therm Anal Calorim. 2016;126:287–92.

    Article  CAS  Google Scholar 

  45. Ceban I, Blajovan R, Vlase G, Albu P, Koppandi O, Vlase T. Thermoanalytical measurements conducted on repaglinide to estimate the kinetic triplet followed by compatibility studies between the antidiabetic agent and various excipients. J Therm Anal Calorim. 2016;126:195–204.

    Article  CAS  Google Scholar 

  46. Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  CAS  Google Scholar 

  47. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis, vol. 9. Norwell: Kluwer-NorwelL. 2003. p. 91–109. LANL LA-UR-02.

  48. Śestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was developed through a bilateral project between Romania and Moldova, CCCDI-UEFISCDI, PN3-P3-217/24BM/19.09.2016 (Romania), 16.80013.5007.04/RO (Moldova) and Romanian Academy Program No. 2 of Institute of Chemistry Timisoara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Vlase.

Additional information

The original version of this article was revised: The author group was published incompletely in the original publication. The complete author group is updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, M., Vlase, G., Plesu, N. et al. Ethylethanolammonium 4-nitrobenzoate. J Therm Anal Calorim 134, 343–352 (2018). https://doi.org/10.1007/s10973-018-7296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7296-6

Keywords

Navigation