Skip to main content
Log in

Preparation and thermal hazard evaluation of 1,3,3,5-tetra(1H-tetrazol-5-yl)-pentane

A new energetic material of multicylco-tetrazoles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel multicyclo-tetrazoles energetic material, 1,3,3,5-tetra(1H-tetrazol-5-yl)-pentane (TTZP), was prepared by 1,3,3,5-tetra(cyano)-pentane and sodium azide. The crystal structure is characterized by X-ray diffraction. The thermal stabilities and the kinetic parameters of TTZP were studied by differential scanning calorimetry (DSC) and adiabatic calorimetry (Phi-TEC). Starink method was employed to calculate the activation energy based on the DSC data. Due to the complex reaction mechanism, the traditional method for the adiabatic data which using an nth-order reaction was modified based on the Kinetics Committee recommendations of the International Confederation for Thermal Analysis and Calorimetry. Avrami–Erofeev equation which was selected for the adiabatic simulation has good performance on the calculation of activation energy and pre-exponential factor. Finally, the important safety parameters (self-accelerating decomposition temperature) was calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu YG, Wang Q, Shen C, Lin QH, Wang PC, Lu M. A series of energetic metal pentazolate hydrates. Nature. 2017;549:78–81.

    Article  CAS  PubMed  Google Scholar 

  2. Speicher TESH. The chemistry of heterocycles: structure, reactions, synthesis, and applications. 2nd ed. New York: Wiley; 2003.

    Google Scholar 

  3. Zhang X, Zhu W, Xiao H. Comparative theoretical studies of energetic substituted carbon- and nitrogen-bridged difurazans. J Phys Chem A. 2010;114:603–12.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou CH, Zhang YY, Yan CY, Wan K, Gan LL, Yuan S. Recent researches in metal supramolecular complexes as anticancer agents. Anti-cancer Agent Med Chem (Formerly Current Medicinal Chemistry—Anti-cancer Agents). 2010;10:371–95.

    Article  CAS  Google Scholar 

  5. Luo Y, Lin L, Yang G. Design and synthesis of diheterocyclic compounds containing tetrazolinone and 1,2,4-triazole. J Heterocycl Chem. 2007;44:937–43.

    Article  CAS  Google Scholar 

  6. Klapötke TM, Piercey DG, Stierstorfer J. The taming of CN7−: the azidotetrazolate 2-oxide anion. Chem Eur J. 2011;17:13068–77.

    Article  CAS  PubMed  Google Scholar 

  7. Rajasekaran A, Murugesan S, AnandaRajagopal K. Antibacterial, antifungal and anticonvulsant evaluation of novel newly synthesized 1-[2-(1H-tetrazol-5-yl)ethyl]-1H-benzo[d][1,2,3]triazoles. Arch Pharm Res. 2006;29:535–40.

    Article  CAS  PubMed  Google Scholar 

  8. Pokhodylo NT, Matiichuk VS, Obushak ND. Synthesis and transformations of 1-(azidophenyl)-1H-tetrazoles. Russ J Org Chem. 2010;46:556–60.

    Article  CAS  Google Scholar 

  9. Wani MY, Bhat AR, Azam A, Choi I, Athar F. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur J Med Chem. 2012;48:313–20.

    Article  CAS  PubMed  Google Scholar 

  10. Yang GW, Zhang FF, Wu Q, Cao MJ, Bai Y, Li QY, Wei B, Zou JH. Substituted group directed assembly of energetic lead(ii) compounds based on structure-relevant ligands. RSC Adv. 2015;5:84439–45.

    Article  CAS  Google Scholar 

  11. Yang G, Li Q, Zhou Y, Sha P, Ma Y, Yuan R. Mn and Cu–Na coordination compounds containing the tetrazole-5-acetato anion (tza) ligands. Inorg Chem Commun. 2008;11:723–6.

    Article  CAS  Google Scholar 

  12. Li Q, Yang G, Tang X, Ma Y, Zhou F, Liu W, Chen J, Zhou H. Synthesis, crystal structures, and luminescence properties of two new coordination compounds [Zn(pytza)2(H2O)2] and [CdCl(pytza)]n (Hpytza=5-(2-pyridyl)tetrazole-2-acetic acid). Inorg Chem Commun. 2010;13:254–7.

    Article  CAS  Google Scholar 

  13. Yang G, Li Q, Zhou Y, Gu G, Ma Y, Yuan R. Two copper(II) coordination polymers containing atza ligand [atza = 5-aminotetrazole-1-acetato]. Inorg Chem Commun. 2008;11:1239–42.

    Article  CAS  Google Scholar 

  14. Li Q, Yang G, Tang X, Ma Y, Yao W, Zhou F, Chen J, Zhou H. Constructions of a set of new lanthanide-based coordination polymers with hatza ligands (hatza = 5-aminotetrazole − 1-acetic acid). Cryst Growth Des. 2010;10:165–70.

    Article  CAS  Google Scholar 

  15. Lei P, Yuchuan L, Yuzhang Y, Wei L, Xuejiao Z, Siping P. Research progress in synthesis of energetic compounds of bicyclo- and multicyclo-tetrazoles. Chin J Org Chem. 2012;32:667–76.

    Article  CAS  Google Scholar 

  16. Sinditskii VP, Smirnov SP, Egorshev VY, Chernyi AN, Shkineva TK, Palysaeva NV, Suponitsky KY, Dalinger IL. Thermal decomposition peculiarities and combustion behavior of nitropyrazoles. Thermochim Acta. 2017;651:83–99.

    Article  CAS  Google Scholar 

  17. Zhu J, Jin S, Yu Y, Zhang C, Li L, Chen S, Shu Q. Evaluation of thermal hazards and thermo-kinetic parameters of N,N′-dinitro-4,4′-azo-Bis(1,2,4-triazolone) (DNZTO). Thermochim Acta. 2016;623:58–64.

    Article  CAS  Google Scholar 

  18. Xiao L, Zhao F, Luo Y, Li N, Gao H, Xue Y, Cui Z, Hu R. Thermal behavior and safety of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calorim. 2016;123:653–7.

    Article  CAS  Google Scholar 

  19. Lin C, Tseng J, Chang Y, Cheng Y, Lin H, Chien C. Green thermal analysis for predicting thermal hazard of storage and transportation safety for tert-butyl peroxybenzoate. J Loss Prevent Proc. 2012;25:1–7.

    Article  CAS  Google Scholar 

  20. Chen W, Shu C. Prediction of thermal hazard for TBPTMH mixed with BPO through DSC and isoconversional kinetics analysis. J Therm Anal Calorim. 2016;126:1937–45.

    Article  CAS  Google Scholar 

  21. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111:1033–7.

    Article  CAS  Google Scholar 

  22. Wang B, Yi H, Xu K, Wang Q. Prediction of the self-accelerating decomposition temperature of organic peroxides using QSPR models. J Therm Anal Calorim. 2017;128:399–406.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  24. Toledo M. STARe software with solaris operating system, operating instructions, Sweden. 2004.

  25. HEL Ltd., PHI-TEC operating manual volume 3 verification of equipment performance and examples of data. 2013.

  26. Yang Y, Tsai Y, Cao C, Shu C. Kinetic and thermal safety analysis for tert-butyl peroxy-3,5,5-trimethylhexanoate by advanced calorimetric technology. J Therm Anal Calorim. 2017;127:2253–62.

    Article  CAS  Google Scholar 

  27. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  28. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  CAS  PubMed  Google Scholar 

  29. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111:1045–56.

    Article  CAS  Google Scholar 

  30. Stoessel F. Thermal safety of chemical processes: risk assessment and process design. New York: Wiley; 2008.

    Book  Google Scholar 

  31. Ni L, Jiang JC, Mannan MS, Mebarki A, Zhang MG, Pan XH, Pan Y. Thermal runaway risk of semibatch processes: esterification reaction with autocatalytic behavior. Ind Eng Chem Res. 2017;56:1534–42.

    Article  CAS  Google Scholar 

  32. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  33. Zhang G, Jin S, Li L, Li Z, Shu Q, Wang D, Zhang B, Li Y. Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG. J Therm Anal Calorim. 2016;126:1223–30.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  35. Yan B, Ma HX, Zhao NN, Mai T, Song JR, Zhao FQ, Hu RZ. Thermal behavior, non-isothermal decomposition reaction kinetics and thermal-safety evaluation on N-2,4-dinitrophenyl-3,3-dinitroazetidine under two different pressures. J Therm Anal Calorim. 2012;110:1253–7.

    Article  CAS  Google Scholar 

  36. Cheng J, Pan Y, Yao J, Wang X, Pan F, Jiang J. Mechanisms and kinetics studies on the thermal decomposition of micron Poly (methyl methacrylate) and polystyrene. J Loss Prevent Proc. 2016;40:139–46.

    Article  CAS  Google Scholar 

  37. Lin WH, Wu SH, Shiu GY, Shieh SS, Shu CM. Self-accelerating decomposition temperature (SADT) calculation of methyl ethyl ketone peroxide using an adiabatic calorimeter and model. J Therm Anal Calorim. 2009;95:645–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support given by key project of National Natural Science Foundation of China under Grant No. 21436006 and Jiangsu Natural Science Foundation of China (BK20171004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juncheng Jiang or Gaowen Yang.

Additional information

Longfei Liu and Lei Ni have contributed equally to this work and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ni, L., Yang, J. et al. Preparation and thermal hazard evaluation of 1,3,3,5-tetra(1H-tetrazol-5-yl)-pentane. J Therm Anal Calorim 132, 1763–1770 (2018). https://doi.org/10.1007/s10973-018-7073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7073-6

Keywords

Navigation