Skip to main content
Log in

Marangoni natural convection in a cubical cavity filled with a nanofluid

Buongiorno’s nanofluid model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Natural convection in a differentially heated cubical cavity filled with a water-based nanofluid under the Marangoni effect from the upper free surface is studied numerically. It is supposed that the Brownian diffusion and thermophoresis are the major slip mechanisms for nanoparticles. Dimensionless governing equations formulated using vector potential functions, vorticity vector and temperature have been solved by the finite difference method of the second-order accuracy. It should be noted that the Marangoni effect is owing to the dependences of surface tension on the temperature and nanoparticles concentration. The effects of the Marangoni number, Lewis number, buoyancy ratio parameter, Brownian diffusion parameter and thermophoresis parameter on nanofluid flow, heat and mass transfer have been analyzed. It has been revealed that a growth of Marangoni number results in the heat transfer rate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C :

Nanoparticle volume fraction (−)

C 0 :

Characteristic nanoparticle volume fraction (−)

D B :

Brownian diffusion coefficient (m2 s−1)

D T :

Thermophoretic diffusion coefficient (m2 s−1)

g :

Gravitational acceleration vector (m s−2)

j p :

Nanoparticles mass flux (kg m−2 s−1)

L :

Size of the cavity (m)

Le :

Lewis number (−)

Ma C :

Marangoni number due to concentration difference effect (−)

Ma T :

Marangoni number due to temperature difference effect (−)

Nb :

Brownian diffusion parameter (−)

Nr :

Buoyancy ratio parameter (−)

Nt :

Thermophoresis parameter (−)

Nu :

Local Nusselt number (−)

\( \overline{Nu} \) :

Average Nusselt number (−)

p :

Dimensional pressure (kg m−1 s−2)

Pr :

Prandtl number (−)

Ra :

Rayleigh number (−)

t :

Dimensional time (s)

T :

Dimensional temperature (K)

T c :

Cooled temperature of the vertical surface at \( \bar{x} = L \) (K)

T h :

Heated temperature of the vertical surface \( \bar{x} = 0 \) (K)

T 0 :

Mean temperature of the heated and cooled surfaces (K)

V :

Dimensional velocity vector (m s−1)

\( \bar{u},\;\bar{v},\;\bar{w} \) :

Dimensional velocity components (m s−1)

x, y, z :

Dimensionless Cartesian coordinates (−)

\( \bar{x},\;\bar{y},\;\bar{z} \) :

Dimensional Cartesian coordinates (m)

α :

Thermal diffusivity (m2 s−1)

β :

Volumetric expansion coefficient (K−1)

δ :

Heat capacitance ratio (−)

θ :

Dimensionless temperature (−)

μ :

Dynamic viscosity (kg m−1 s−1)

\( \rho_{\text{f0}} \) :

Fluid density (kg m−3)

ρ p :

Nanoparticle mass density (kg m−3)

σ :

Surface tension (kg s−2)

ϕ :

Nanoparticles volume fraction (−)

\( \bar{\psi }_{\text{x}} ,\;\,\bar{\psi }_{\text{y}} ,\;\,\bar{\psi }_{\text{z}} \) :

Dimensional vector potential functions (m2 s−1)

\( \psi_{\text{x}} ,\;\,\psi_{\text{y}} ,\;\,\psi_{\text{z}} \) :

Dimensionless vector potential functions (−)

\( \bar{\omega }_{\text{x}} ,\;\bar{\omega }_{\text{y}} ,\;\bar{\omega }_{\text{z}} \) :

Dimensional vorticity vector components (s−1)

\( \omega_{\text{x}} ,\;\omega_{\text{y}} ,\;\omega_{\text{z}} \) :

Dimensionless vorticity vector components (−)

c:

Cold

f:

Fluid

h:

Hot

p:

Nanoparticle

References

  1. Levich VG. Physicochemical hydrodynamics. Englewood Cliffs: Prentice-Hall; 1962.

    Google Scholar 

  2. Sawistowski H. Interfacial phenomena. In: Hanson C, editor. Recent advances in liquid–liquid extraction. Oxford: Pergamon; 1971. p. 293–366.

    Chapter  Google Scholar 

  3. Daniel S, Chaudhury MK, Chen JC. Fast drop movements resulting from the phase change on a gradient surface. Science. 2001;291:633–6.

    Article  CAS  PubMed  Google Scholar 

  4. Daniel S, Sircar S, Gliem J, Chaudhury MK. Ratcheting motion of liquid drops on gradient surfaces. Langmuir. 2004;20:4085–92.

    Article  CAS  PubMed  Google Scholar 

  5. Colegate DM, Bain CD. Adsorption kinetic in micellar solutions of nonionic surfactant. Phys Rev Lett. 2005;95:198302.

    Article  CAS  PubMed  Google Scholar 

  6. Weiss M, Darton CR, Battal T, Bain CD. Surfactant adsorption and Marangoni flow in liquid jets. 3. Modeling in the presence of micellar surfactant. Ind Eng Chem Res 2006;45:2235–48

    Article  CAS  Google Scholar 

  7. Bahadur P, Yadav PS, Chaurasia K, Leh A, Tadmor R. Chasing drops: following escaper and pursuer drop couple system. J Colloid Interface Sci. 2009;332:455–60.

    Article  CAS  PubMed  Google Scholar 

  8. Tadmor R. Marangoni flow revisited. J Colloid Interface Sci. 2009;332:451–4.

    Article  CAS  PubMed  Google Scholar 

  9. Magyari E, Chamkha AJ. Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int J Thermal Sci. 2008;47:848–57.

    Article  CAS  Google Scholar 

  10. Napolitano LG. Microgravity fluid dynamics. In: 2nd Levitch conference, Washington. 1978.

  11. Napolitano LG. Marangoni boundary layers. In: Proceedings of the 3rd European symposium on material science in space, Grenoble, ESA SP-142, 1979.

  12. Napolitano LG. Surface and buoyancy driven free convection. Acta Astronaut. 1982;9:199–215.

    Article  Google Scholar 

  13. Pop I, Postelnicu A, Grosan T. Thermosolutal Marangoni forced convection boundary layers. Meccanica. 2001;36:555–71.

    Article  Google Scholar 

  14. Chamkha AJ, Pop I, Takhar HS. Marangoni mixed convection boundary layerflow. Meccanica. 2006;41:219–32.

    Article  Google Scholar 

  15. Al-Mudhaf A, Chamkha AJ. Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects. Heat Mass Transf. 2005;42:112–21.

    Article  CAS  Google Scholar 

  16. Arifin NM, Nazar R, Pop I. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water based fluid. Meccanica. 2011;46:833–43.

    Article  Google Scholar 

  17. Gollub JP, Benson SV. Many routes to turbulent convection. J Fluid Mech. 1980;100:449–70.

    Article  Google Scholar 

  18. Mukutmoni D, Yang KT. Rayleigh-Benard convection in a small aspect ratio enclosure 1. Bifurcation to oscillatory convection, ASME J Heat Transf. 1993;115:360–6.

    Article  CAS  Google Scholar 

  19. Mukutmoni D, Yang KT. Rayleigh–Benard convection in a small aspect ratio enclosure 2. Bifurcation to chaos. J Heat Transf. 1993;115:367–76.

    Article  CAS  Google Scholar 

  20. Mukutmoni D, Yang KT. Thermal convection in small enclosures—an atypical bifurcation sequence. Int J Heat Mass Transf. 1995;38:113–26.

    Article  Google Scholar 

  21. Bucchignani E, Stella F. Rayleigh–Benard convection in limited domains: part 2—transition to chaos. Numer. Heat Tranf A. 1999;36:17–34.

    Article  CAS  Google Scholar 

  22. Rahal S, Cerisier P, Abid C. Transition to chaos via the quasi-periodicity and characterization of attractors in confined Benard–Marangoni convection. Eur Phys J B. 2007;59:509–18.

    Article  CAS  Google Scholar 

  23. Bucchignani E, Mansutti D. Horizontal thermal convection in a shallow cavity: oscillatory regimes and transition to chaos. Int J Numer Methods Heat Fluid Flow. 2000;10:179–95.

    Article  Google Scholar 

  24. Bucchignani E, Mansutti D. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos. Phys Rev E. 2004;69:056319.

    Article  CAS  Google Scholar 

  25. Li Y-S, Chen Z-W, Zhan J-M. Double-diffusive Marangoni convection in a rectangular cavity: transition to chaos. Int J Heat Mass Transf. 2010;53:5223–31.

    Article  Google Scholar 

  26. Bergman TL. Numerical simulation of double-diffusive Marangoni convection. Phys Fluids. 1986;29:2103–8.

    Article  CAS  Google Scholar 

  27. Chamkha AJ. Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer Heat Transf A. 2002;41:65–87.

    Article  Google Scholar 

  28. Chamkha AJ, Grosan T, Pop I. Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf. 2002;29:1119–27.

    Article  Google Scholar 

  29. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, FED 231/MD 66; 1995. p. 99–105.

  30. Manca O, Jaluria Y, Poulikakos D. Heat transfer in nanofluids. Adv Mech Eng. 2010; Article ID 380826, 2010.

  31. Timilsina GR, Kurdgelashvili L, Narbel PA. Solar energy: markets, economics and policies. Renew Sustain Energy Rev. 2012;16:449–65.

    Article  Google Scholar 

  32. Routbort J. Argonne national lab. Michellin North America: St. Gobain Corp; 2009.

    Google Scholar 

  33. Donzelli G, Cerbino R, Vailati A. Bistable heat transfer in a nanofluid. Phys Rev Lett. 2009;102:104503.

    Article  CAS  PubMed  Google Scholar 

  34. Kim SJ, Bang IC, Buongiorno J, Hu LW. Study of pool boiling and critical heat flux enhancement in nanofluids. Bull Polish Acad Sci Tech Sci. 2007,55: 211–16.

    Google Scholar 

  35. Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. New Jersey: Wiley; 2008.

    Google Scholar 

  36. Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  37. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. New York: CRC Press, Taylor & Francis Group; 2016.

    Book  Google Scholar 

  38. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  39. Buongiorno J, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:1–14.

    Article  CAS  Google Scholar 

  40. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  CAS  Google Scholar 

  41. Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS. A review of thermal conductivity data, mechanics and models for nanofluids. Int J Micro-Nano Scale Transp. 2010;1:269–322.

    Article  CAS  Google Scholar 

  42. Fan J, Wang L. Review of heat conduction in nanofluids. ASME J Heat Transf. 2011;133:1–14.

    Google Scholar 

  43. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  44. Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng 2016;65(2016):43–77.

    Article  CAS  Google Scholar 

  45. Nield DA, Kuznetsov AV. Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transf. 2014;68:211–4.

    Article  Google Scholar 

  46. Nield DA, Kuznetsov AV. The onset of convection in a horizontal nanofluid layer of finite depth: a revised model. Int J Heat Mass Transf. 2014;77:915–8.

    Article  Google Scholar 

  47. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Thermal Sci. 2010;49:243–7.

    Article  CAS  Google Scholar 

  48. Kuznetsov AV, Nield DA. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int J Heat Mass Transf. 2013;65:682–5.

    Article  CAS  Google Scholar 

  49. Sheikholeslami M, Chamkha AJ. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq. 2017;225:750–7.

    Article  CAS  Google Scholar 

  50. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  51. Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha AJ. Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer Heat Transf A. 2016;70:432–45.

    Article  CAS  Google Scholar 

  52. Sheikholeslami M, Chamkha AJ, Rana P, Moradi R. Combined thermophoresis and Brownian motion effects on nanofluid free convection heat transfer in an L-shaped enclosure. Chin J Phys. 2017;55:2356–70.

    Article  CAS  Google Scholar 

  53. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939–61.

    Article  CAS  Google Scholar 

  54. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Conjugate natural convection of Al2O3-water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int J Mech Sci. 2018;136:200–19.

    Article  Google Scholar 

  55. Martyushev SG, Sheremet MA. Conjugate natural convection combined with surface thermal radiation in a three-dimensional enclosure with a heat source. Int J Heat Mass Transf. 2014;73:340–53.

    Article  Google Scholar 

  56. Sheremet MA, Pop I, Rahman MM. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2015;82:396–405.

    Article  Google Scholar 

  57. Bondareva NS, Sheremet MA. 3D natural convection melting in a cubical cavity with a heat source. Int J Thermal Sci. 2017;115:43–53.

    Article  Google Scholar 

  58. Kolsi L, Oztop HF, Borjini MN, Al-Salem K. Second law analysis in a three dimensional lid-driven cavity. Int Commun Heat Mass Transf 2011;38:1376–83.

    Article  Google Scholar 

  59. Maatki C, Kolsi L, Oztop HF, Chamkha A, Borjini MN, Aissia HB, Al-Salem K. Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture. Int Commun Heat Mass Transf. 2013;49:86–95.

    Article  Google Scholar 

  60. Kolsi L, Alrashed AAAA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work of Mikhail A. Sheremet was conducted as a government task of the Ministry of Education and Science of the Russian Federation (Project Number 13.6542.2017/6.7). The work of Ioan Pop has been supported from the Grant PN-III-P4-ID-PCE-2016-0036, UEFISCDI, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Sheremet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet, M.A., Pop, I. Marangoni natural convection in a cubical cavity filled with a nanofluid. J Therm Anal Calorim 135, 357–369 (2019). https://doi.org/10.1007/s10973-018-7069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7069-2

Keywords

Navigation