Skip to main content
Log in

Ultrasonically welded and non-welded polypropylene and PC-ABS blend thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Automobile industries are focusing toward the reduction in the weight of vehicle that leading to cost reduction and improving the fuel efficiency. Polymers are the main alternatives in conventional engineering materials for automobile components due to their advanced mechanical and thermal properties. This article is mainly focused on the ultrasonic welding of polypropylene and PC-ABS materials followed by thermal analysis of injection-molded and welded specimens. The materials are examined by an advanced analysis method called differential scanning calorimetry. The crystalline nature of the material is changed (area varies from 95.1 to 115.4 J g−1) at injection-molded regions in polypropylene differential scanning calorimetric results. After polypropylene welding, the glass transition temperature values tend to change from 5 to 10 K min−1 heating ranges. In PC-ABS blend, the glass transition temperature is changed from 126.3 to 127.0 °C in the non-welded material. From the welded PC-ABS material results, it is evident that the difference between 5 and 10 K min−1 heating value is only 1.8 °C. Finally, the finite element analysis is carried out to examine the materials deformation pattern with temperature loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thakur VK, Vennerberg D, Kessler MR. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater. 2014;6:9349–56.

    Article  CAS  Google Scholar 

  2. Yazdi MH, Pearl LS. Determination of dual glass transition temperatures of a PC/ABS blend using two TMA modes. J Therm Anal Calorim. 2009;96(1):7–14.

    Article  CAS  Google Scholar 

  3. Suresh KS, Roopa Rani M, Prakasan K, Rudramoorthy R. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs. J Mater Process Technol. 2007;186(1):138–46.

    Article  CAS  Google Scholar 

  4. Schawe JEK. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim. 2014;116(3):1165–73.

    Article  CAS  Google Scholar 

  5. Thompson JL, Van Rooyen AA. Transcrystallized interphase in thermoplastic composites, Part I: influence of fiber type and crystallization temperature. J Mater Sci. 1992;27(4):889–96.

    Article  Google Scholar 

  6. Farhanian Sajed. Mehdi H. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130(3):2069–78.

    Article  CAS  Google Scholar 

  7. Sohn JI, Lim ST, Park SH, Choi HJ, Jhon MS. Effect of a reactive-type flame retardant on rheological and mechanical properties of PC/ABS blends. J Mater Sci. 2003;38:1485–91.

    Article  CAS  Google Scholar 

  8. Tsujino J, Hongoh M, Tanaka R, Onoguchi R, Ueoka T. Ultrasonic plastic welding using fundamental and higher frequencies. Ultrasonics. 2002;40:375–8.

    Article  PubMed  Google Scholar 

  9. Benatar A, Cheng Z. Ultrasonic welding of thermoplastics in the far field. Polym Eng Sci. 1989;29(23):1699–704.

    Article  CAS  Google Scholar 

  10. Kim SR, Lee JH, Yoo CD, Song JY, Lee SS. Design of highly uniform spool and bar horns for ultrasonic bonding. In: IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2011; 58(10).

  11. Saboktakin AA, Ibarra-Castanedo C, Bendada AH, Maldague X. Finite element analysis of heat generation in ultrasonic thermography. In Proceedings of QIRT. 2011; pp. 619–24.

  12. Ageorges C, Ye L, Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composite. Compos Appl Sci Manuf. 2001;32:839–57.

    Article  Google Scholar 

  13. Wang J, Mao QC, Chen JN. Preparation of polypropylene single-polymer composites by injection molding. J Appl Polym Sci. 2013;130(3):2176–83.

    Article  CAS  Google Scholar 

  14. http://www.dukane.com/us/PPL_iQ_i220.htm.

  15. Golebiewski Jan. Andrzej G. Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Compos Sci Technol. 2007;67(15):3442–7.

    Article  CAS  Google Scholar 

  16. Basalp D, Tihminlioğlu F. The effects of natural zeolite and silane coupling agents on melting and crystallization behaviour of polypropylene. J Therm Anal Calorim. 2008;94(3):757–65.

    Article  CAS  Google Scholar 

  17. Luo J, Liang Y, Yang J, Niu H, Dong JY, Han CC. Mechanisms of nucleation and crystal growth in a nascent isotactic polypropylene/poly (ethylene-co-octene) in-reactor alloy investigated by temperature-resolved synchrotron SAXS and DSC methods. Polymer. 2011;52(20):4590–9.

    Article  CAS  Google Scholar 

  18. Wunderlich B. Reversible crystallization and the rigid–amorphous phase in semicrystalline macromolecules. Prog Polym Sci. 2003;28(3):383–450.

    Article  CAS  Google Scholar 

  19. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly (L-lactide). Polymer. 2005;46(23):10290–300.

    Article  CAS  Google Scholar 

  20. Suarez H, Barlow JW, Paul DR. Mechanical properties of ABS/polycarbonate blends. J Appl Polym Sci. 1984;29(11):3253–9.

    Article  CAS  Google Scholar 

  21. Benatar A, Eswaran RV, Nayar SK. Ultrasonic welding of thermoplastics in the near-field. Polym Eng Sci. 1989;29(23):1689–98.

    Article  CAS  Google Scholar 

  22. Shieu F-S, Bo-Hua W. On the microstructure and tensile strength of PC/ABS polymer blend joints. J Polym Res. 1995;2(4):263–7.

    Article  CAS  Google Scholar 

  23. Troughton, M J. Handbook of plastics joining: a practical guide. William Andrew. 2008.

  24. Varga J. Supermolecular structure of isotactic polypropylene. J Mater Sci. 1992;27(10):2557–79.

    Article  CAS  Google Scholar 

  25. Rybiński Przemysław, Grażyna J. Effect of the spatial network structure and cross-link density of diene rubbers on their thermal stability and fire hazard. J Therm Anal Calorim. 2014;117(1):377–86.

    Article  CAS  Google Scholar 

  26. Greco R, Maria FA, Lisong D, Sorrentino A. Polycarbonate/ABS blends: processability, thermal properties, and mechanical and impact behavior. Adv Polym Technol. 1994;13(4):259–74.

    Article  CAS  Google Scholar 

  27. Parres F, Balart R, López R, García D. Changes in the mechanical and thermal properties of high impact polystyrene (HIPS) in the presence of low polypropylene (PP) contents. J Mater Sci. 2008;43(9):3203–9.

    Article  CAS  Google Scholar 

  28. Romano RS, Grecco WLO, Duclerc FP, Ademar BL. Accelerated environmental degradation of gamma irradiated polypropylene and thermal analysis. J Therm Anal Calorim. 2018;131(1):823–828.

    Article  CAS  Google Scholar 

  29. Teixeira M, Del Hoyo I, Wandrowelsti F, Swinka-Filho V, Munaro M. Evaluation of thermal degradation in isotactic polypropylene films used in power capacitors. J Therm Anal Calorim. 2017;130(2):997–1002.

    Article  CAS  Google Scholar 

  30. Li Bo, Runlai L, Xongxin X. Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite. J Mater Sci. 2017;52(5):2524–33.

    Article  CAS  Google Scholar 

  31. Haghighi Y, Mojtaba PL, Ali M. Specific heat capacity of polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) blend after hygrothermal aging. J Therm Anal Calorim. 2017;130(3):2105–11.

    Article  CAS  Google Scholar 

  32. Chiang W-Y, Gwo-Long T. Effect of the compatibilizers on flame-retardant polycarbonate (PC)/acrylonitrile–butadiene–styrene (ABS) alloy. J Appl Polym Sci. 1997;65(4):795–805.

    Article  CAS  Google Scholar 

  33. Aid S, Anissa E, Zaida O, Daniel F, Abbas T. Experimental study of the miscibility of ABS/PC polymer blends and investigation of the processing effect. J Appl Polym Sci. 2017; 134 (25).

  34. Nigam I, Nigam D, Mathur GN. Effect of rubber content of ABS on properties of PC/ABS blends. I. Rheological, mechanical, and thermal properties. Polym-Plastics Technol Eng. 2005;44(5):815–32.

    Article  CAS  Google Scholar 

  35. Rostami Amir, Mohsen M, Mohammad JF, Mehdi V. Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC. Advances. 2015;5(41):32880–90.

    CAS  Google Scholar 

  36. Krache Rachida, Ismahane D. Some mechanical and thermal properties of PC/ABS blends. Mater Sci Appl. 2011;2(5):404.

    CAS  Google Scholar 

  37. Thuong, Nguyen T, Nguyen DM, Phuong Q, Bui T, Long GB. Preparation and Characterization of Properties of Acrylonitrile Butadiene Styrene Waste Plastic Blended with Virgin Styrene Butadiene Rubber. In Key Engineering Materials. 2017; 718: 3–9.

  38. Zhong Y, Umeyr K, Heow PL. Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis. J Mater Sci. 2017;52(9):4957–67.

    Article  CAS  Google Scholar 

  39. Lambiase F, Genna S, Kant R. A procedure for calibration and validation of FE modelling of laser-assisted metal to polymer direct joining. Opt Laser Technol. 2018;98:363–72.

    Article  Google Scholar 

  40. Lionetto Francesca, Riccardo DA, Francesco M, Alfonso M. Modeling of continuous ultrasonic impregnation and consolidation of thermoplastic matrix composites. Compos A Appl Sci Manuf. 2016;82:119–29.

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chinnadurai.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnadurai, T., Prabaharan, N., Raj, N.M. et al. Ultrasonically welded and non-welded polypropylene and PC-ABS blend thermal analysis. J Therm Anal Calorim 132, 1813–1824 (2018). https://doi.org/10.1007/s10973-018-7052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7052-y

Keywords

Navigation