Skip to main content
Log in

Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main purpose of this research is to investigate the effect of using SiC/water and MgO/water nanofluids on convection heat transfer in a circular tube with constant heat flux boundary condition. Thermophysical properties of these nanofluids, such as viscosity, density, and thermal conductivity, have also been measured and reported. SiC nanoparticles with 50 nm diameters at 0.04–0.2% volume concentrations and MgO nanoparticles with a size of 40 nm and volume concentration ranging from 0.02 to 0.12% are used to make the nanofluids. This study is done in a vertically oriented straight stainless steel tube under turbulent flow condition. Results of heat analysis showed that both Gnielinski and Hausen correlations underpredict the experimental data. Two models have been developed to predict heat parameters of nanofluids based on Gnielinski and Hausen correlations using experimental data. Modified correlations can precisely estimate Nusselt number and heat transfer coefficient of nanofluids in the range of nanoparticles studied with maximum errors of less than 1%. The average increase in Nusselt number for SiC/water and MgO/water nanofluids in the entire range of Reynolds number and volume percent used in this work is 8.88 and 5.71%, respectively, compared to distilled water under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Tube cross-sectional area (m2)

a, b, c :

Constant (dimensionless)

\(C_{\text{P}}\) :

Specific heat capacity (kJ kg−1 K−1)

D :

Diameter (m)

d :

Nanoparticle diameter (nm)

h :

Heat transfer coefficient (W m−2 K−1)

I :

Electrical current (A)

k :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

m :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu:

Nusselt number (dimensionless)

S :

Tube perimeter (m)

Pr:

Prandtl number (dimensionless)

Q :

Thermal power (W)

\(\dot{q}\) :

Heat flux (W m−2)

Re:

Reynolds number (dimensionless)

T :

Temperature (K)

u :

Mean fluid velocity (m s−1)

V :

Volume (m3) or voltage (v)

x :

Axial direction (m)

\(f_{\text{i}}\) :

Friction factor (dimensionless)

\(\delta_{\text{V}}^{ + }\) :

Dimensionless thickness of laminar sublayer

∅:

Nanoparticle volume fraction in nanofluid

μ :

Dynamic viscosity (kg m−1 s−1)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

b:

Bulk

bf:

Base fluid

in:

Inlet condition

nf:

Nanofluid

out:

Outlet condition

s:

Solid particle

w:

Wall

wnf:

Nanofluid at water temperature

CNT:

Carbon nanotube

Exp:

Experimental

EG:

Ethylene glycol

MW:

Multiwalled

NP:

Nanoparticle

W:

Water

References

  1. Ahuja AS. Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys. 1975;46:3408–16.

    Article  CAS  Google Scholar 

  2. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995;231:99–106.

    CAS  Google Scholar 

  3. Khoshvaght-Aliabadi M, Pazdar S, Sartipzadeh O. Experimental investigation of water based nanofluid containing copper nanoparticles across helical microtubes. Int Commun Heat Mass Transf. 2016;70:84–92. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.006.

    Article  CAS  Google Scholar 

  4. Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931.

    Article  CAS  Google Scholar 

  5. Xing M, Yu J, Wang R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf. 2015;88:609–16. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.

    Article  CAS  Google Scholar 

  6. Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S. Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf. 2016;70:66–74. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.002.

    Article  CAS  Google Scholar 

  7. Li X, Zou C, Zhou L, Qi A. Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf. 2016;97:631–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.056.

    Article  CAS  Google Scholar 

  8. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016.

    Article  CAS  Google Scholar 

  9. Guo S-Z, Li Y, Jiang J-S, Xie H-Q. Nanofluids containing γ-Fe2O3 nanoparticles and their heat transfer enhancements. Nanoscale Res Lett. 2010;5:1222–7.

    Article  CAS  Google Scholar 

  10. Nemade K, Waghuley S. A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids. Appl Therm Eng. 2016;95:271–4.

    Article  CAS  Google Scholar 

  11. Chen J, Zhai F, Liu M, Hou X, Chou KC. SiC Nanowires with tunable hydrophobicity/hydrophilicity and their application as nanofluids. Langmuir. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27223246.

  12. Senthilkumar D. Thermophysical behavior of cryogenically treated silicon carbide for nanofluids. Mater Manuf Process. 2014;29:819–25. https://doi.org/10.1080/10426914.2014.892976.

    Article  CAS  Google Scholar 

  13. Yanuar, Putra N, Gunawan, Baqi M. Flow and convective heat transfer characteristics of spiral pipe for nanofluids. Int J Res Rev Appl Sci. 2011;7:236–48.

    CAS  Google Scholar 

  14. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8. http://linkinghub.elsevier.com/retrieve/pii/S0304885316308198.

  15. Hemmat Esfe M, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.013.

    Article  CAS  Google Scholar 

  16. Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90. https://doi.org/10.1016/j.expthermflusci.2016.07.011.

    Article  CAS  Google Scholar 

  17. Hemmat Esfe M, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002.

    Article  CAS  Google Scholar 

  18. Babita, Sharma SK, Mital GS. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016;79:202–12. http://linkinghub.elsevier.com/retrieve/pii/S0894177716301728.

  19. Xie H, Wang J, Xi T, Liu Y. Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys. 2002;23:571–80.

    Article  CAS  Google Scholar 

  20. Singh D, Timofeeva E, Yu W, Routbort J, France D, Smith D, et al. An investigation of silicon carbide–water nanofluid for heat transfer applications. J Appl Phys. 2009;105(6):064306.

    Article  Google Scholar 

  21. Lee SW, Park SD, Kang S, Bang IC, Kim JH. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–8. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.026.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  CAS  Google Scholar 

  23. Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology. 2010;21:215703.

    Article  Google Scholar 

  24. Manna O, Singh SK, Paul G. Enhanced thermal conductivity of nano-SiC dispersed water based nanofluid. Bull Mater Sci. 2012;35:707–12.

    Article  CAS  Google Scholar 

  25. Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water–ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12. https://doi.org/10.1016/j.molliq.2017.02.037.

    Article  CAS  Google Scholar 

  26. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67. https://doi.org/10.1007/s10973-017-6213-8.

    Article  CAS  Google Scholar 

  27. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35. https://doi.org/10.1007/s10973-016-5436-4.

    Article  CAS  Google Scholar 

  28. Hemmat Esfe M, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle: effects of temperature and solid volume fraction. J Therm Anal Calorim. 2016;126:643–8. https://doi.org/10.1007/s10973-016-5506-7.

    Article  CAS  Google Scholar 

  29. Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40 %) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43. https://doi.org/10.1007/s10973-016-5469-8.

    Article  CAS  Google Scholar 

  30. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  CAS  Google Scholar 

  31. Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Abbasian Arani AA, et al. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82:154–60. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.015.

    Article  CAS  Google Scholar 

  32. Yu W, France DM, Smith DS, Singh D, Timofeeva EV, Routbort JL. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52:3606–12. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036.

    Article  CAS  Google Scholar 

  33. Celata GP, D’Annibale F, Mariani A, Saraceno L, D’amato R, Bubbico R. Heat transfer in water-based SiC and TiO2 Nanofluids. Heat Transf Eng. 2013;34:1060–72. https://doi.org/10.1080/01457632.2013.763542.

    Article  CAS  Google Scholar 

  34. Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78. https://doi.org/10.1016/j.expthermflusci.2013.08.023.

    Article  CAS  Google Scholar 

  35. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.

    Article  CAS  Google Scholar 

  36. Zhang J, Diao Y, Zhao Y, Zhang Y. Thermal-hydraulic performance of SiC–Water and Al2O3–water nanofluids in the minichannel. J Heat Transfer. 2015;138:021705.

    Article  Google Scholar 

  37. Kim KM, Jeong YS, Kim IG, Bang IC. Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. Int J Heat Mass Transf. 2015;88:862–71. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.108.

    Article  CAS  Google Scholar 

  38. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35. https://doi.org/10.1016/j.applthermaleng.2015.07.004.

    Article  CAS  Google Scholar 

  39. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E Low Dimens Syst Nanostruct. 2017;85:103–8. https://doi.org/10.1016/j.physe.2016.08.022.

    Article  CAS  Google Scholar 

  40. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E Low Dimens Syst Nanostruct. 2017;87:134–40. https://doi.org/10.1016/j.physe.2016.11.035.

    Article  CAS  Google Scholar 

  41. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22. https://doi.org/10.1007/s10973-017-6372-7.

    Article  CAS  Google Scholar 

  42. Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32. https://doi.org/10.1016/j.euromechflu.2016.09.014.

    Article  Google Scholar 

  43. Aghajani M, Müller-Steinhagen H, Jamialahmadi M. New design equations for liquid/solid fluidized bed heat exchangers. Int J Heat Mass Transf. 2005;48:317–29. http://linkinghub.elsevier.com/retrieve/pii/S0017931004003710.

  44. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  45. Pakdaman MF, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Therm Fluid Sci. 2012;40:103–11. https://doi.org/10.1016/j.expthermflusci.2012.02.005.

    Article  Google Scholar 

  46. Gnielinski V. New equations for heat and mass-transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359–68.

    Google Scholar 

  47. Filonenko GK. Hydraulic resistance in pipes. Teploenergetika. 1954;1:40–4.

    Google Scholar 

  48. Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.

    Article  CAS  Google Scholar 

  49. Heyhat MM, Kowsary F, Rashidi AM, Alem Varzane Esfehani S, Amrollahi A. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. Int Commun Heat Mass Transf. 2012;39:1272–8.

    Article  CAS  Google Scholar 

  50. Ferrouillat S, Bontemps A, Ribeiro J-P, Gruss J-A, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32:424–39.

    Article  CAS  Google Scholar 

  51. Torii S. Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng. 2015;2:917612.

    Article  Google Scholar 

  52. Hausen H. New equations for heat transfer in free or force flow. Allg Warmetchn. 1959;9:75–9.

    CAS  Google Scholar 

  53. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240.

    Article  Google Scholar 

  54. Marquis FDS, Chibante LPF. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM. 2005;57:32–43.

    Article  CAS  Google Scholar 

  55. Zhou S-Q, Ni R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett. 2008;92:093123.

    Article  Google Scholar 

  56. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83:97.

    Article  Google Scholar 

  57. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  58. Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;324:289–306.

    Article  Google Scholar 

  59. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  60. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon press; 1873.

    Google Scholar 

  61. Kakaç S, Pramuanjaroenkij A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids—a state-of-the-art review. Int J Therm Sci. 2016;100:75–97. http://linkinghub.elsevier.com/retrieve/pii/S1290072915002823.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Dabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabiri, E., Bahrami, F. & Mohammadzadeh, S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim 131, 2243–2259 (2018). https://doi.org/10.1007/s10973-017-6791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6791-5

Keywords

Navigation