Skip to main content
Log in

Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Tube cross section area (m2)

C p :

Specific heat capacity (J kg−1 K−1)

D :

Tube diameter (m)

fi:

Friction factor (dimensionless)

h :

Heat transfer coefficient (W m−2 K−2)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of tube (m)

I :

Electric current (A)

m :

Mass flow rate (kg s−1)

Nu :

Nusselt number (dimensionless)

Pr :

Prandtl number (dimensionless)

Q :

Input energy (W)

q :

Heat flux (W m−2)

Re :

Reynolds number (dimensionless)

S :

Tube perimeter (m)

T :

Temperature (K)

u :

Mean velocity of fluid (m s−1)

V :

Electric potential difference (V)

X :

Axial distance from the entrance (m)

δ +v :

Dimensionless thickness of the laminar sublayer (dimensionless)

ΔS :

Thickness of tube (m)

μ :

Viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

ϕ :

Volume fraction (dimensionless)

b:

Bulk

bf:

Base fluid

nf:

Nanofluid

p:

Particle

th:

Thermocouple

v:

Laminar sublayer

w:

Wall

x:

Local length

RAAD:

Relative absolute average deviation

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. San Francisco: International Mechanical Engineering Congress and Exposition; 1995.

    Google Scholar 

  2. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans. 1998;11:151–70.

    Article  CAS  Google Scholar 

  3. Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.

    Article  CAS  Google Scholar 

  4. Sundar LS, Naik M, Sharma K, Singh M, Reddy TS. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Therm Fluid Sci. 2012;37:65–71.

    Article  CAS  Google Scholar 

  5. Kanna PR, Taler J, Anbumalar V, Kumar AVS, Pushparaj A, Christopher DS. Conjugate heat transfer from sudden expansion using nanofluid. Numer Heat Trans Part A Appl. 2014;67:75–99.

    Article  CAS  Google Scholar 

  6. Sajadi A, Kazemi M. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. Int Commun Heat Mass Trans. 2011;38:1474–8.

    Article  CAS  Google Scholar 

  7. Fotukian S, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Trans. 2010;37:214–9.

    Article  CAS  Google Scholar 

  8. Djajadiwanta E, Al-Ansary HA, Al-Dakkan K, Bagabas A, Al-Jakiwi A, Zedan MF. Turbulent convective heat transfer and pressure drop of dilute CuO-water. In 3rd micro and Nano Flows Conference Thessaloniki, Greece, 22–24; August 2011.

  9. Motevasel M, Solaimany Nazar AR, Jamialahmadi M. Experimental investigation of turbulent flow convection heat transfer of MgO/water nanofluid at low concentrations—prediction of aggregation effect of nanoparticles. Int J Heat Technol. 2017;35:755–64.

    Article  Google Scholar 

  10. Esfe MH, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Trans. 2014;73:186–94.

    Article  CAS  Google Scholar 

  11. Meriläinen A, Seppälä A, Saari K, Seitsonen J, Ruokolainen J, Puisto S, et al. Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. Int J Heat Mass Trans. 2013;61:439–48.

    Article  CAS  Google Scholar 

  12. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  13. Rayatzadeh HR, Saffar-Avval M, Mansourkiaei M, Abbassi A. Effects of continuous sonication on laminar convective heat transfer inside a tube using water–TiO2 nanofluid. Exp Therm Fluid Sci. 2013;48:8–14.

    Article  CAS  Google Scholar 

  14. Lin J-Z, Xia Y, Ku X-K. Pressure drop and heat transfer of nanofluid in turbulent pipe flow considering particle coagulation and breakage. J Heat Trans. 2014;136:111701.

    Article  Google Scholar 

  15. Maddah H, Ghasemi N. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks. Heat Mass Trans. 2017;53:3459–72.

    Article  CAS  Google Scholar 

  16. Davarnejad R. Modeling of TiO2-water nanofluid effect on heat transfer and pressure drop. Int J Eng. 2013;27:195–202.

    Google Scholar 

  17. Sahin B, Manay E, Akyurek EF. An experimental study on heat transfer and pressure drop of CuO-water nanofluid. J Nanomater. 2015;2015:1–10.

    Article  CAS  Google Scholar 

  18. Yousefi-Lafouraki B, Ramiar A, Ranjbar AA. Numerical simulation of two phase turbulent flow of nanofluids in confined slot impinging jet. Flow Turb Combs. 2016;97:571–89.

    Article  CAS  Google Scholar 

  19. Guzei DV, Minakov AV, Rudyak VY. Investigation of heat transfer of nanofluids in turbulent flow in a cylindrical channel. Fluid Dyn. 2016;51:189–99.

    Article  CAS  Google Scholar 

  20. Torii S. Turbulent heat transfer behavior of nanofluid in a circular tube heated under constant heat flux. Adv Mech Eng. 2010;2:917612.

    Article  CAS  Google Scholar 

  21. Heris SZ, Etemad S, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Trans. 2006;33:529–35.

    Article  CAS  Google Scholar 

  22. Azmi W, Sharma K, Mamat R, Anuar S. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy Procedia. 2014;52:296–307.

    Article  CAS  Google Scholar 

  23. Hausen H. New equation for heat transfer in free or force flow. Allg Warmetchn. 1959;9:75–9.

    CAS  Google Scholar 

  24. Gnielinski V. Warmeu bergang in Rohern, VDI, Warmeatlas, Fifthed, VDI_Verlag, Dusseldorf (1986).

  25. Ghajar AJ, Tam L-M. Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations. Exp Therm Fluid Sci. 1994;8:79–90.

    Article  CAS  Google Scholar 

  26. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Trans. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  27. Duangthongsuk W, Wongwises S. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. Int Commun Heat Mass Trans. 2008;35:1320–6.

    Article  CAS  Google Scholar 

  28. Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;324:289–306.

    Article  Google Scholar 

  29. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  30. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Trans. 1999;13:474–80.

    Article  CAS  Google Scholar 

  31. Motevasel M, Solaimany Nazar AR, Jamialahmadi M. The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: experimental and theoretical evaluations. Heat Mass Trans. 2017;54:125–33.

    Article  CAS  Google Scholar 

  32. Motevasel M, Soleimanynazar A, Jamialahmadi M. Comparing mathematical models to calculate the thermal conductivity of nanofluids. Am J Oil Chem Technol. 2014;2(11):359–69.

    Google Scholar 

  33. Garnett JCM. Colours in metal glasses and in metallic films. Proc R Soc Lond. 1904;73:443–5.

    Article  Google Scholar 

  34. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  35. Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow. 2005;26:855–64.

    Article  CAS  Google Scholar 

  36. Buongiorno J. Convective transport in nanofluids. J Heat Trans. 2006;128:240.

    Article  Google Scholar 

  37. Prandtl L. Fuehrer Durch dic stroemungslenhre. Braunschweig: Vieweg; 1994. p. 359.

    Google Scholar 

  38. Mcnab G, Meisen A. Thermophoresis in liquids. J Colloid Interface Sci. 1973;44:339–46.

    Article  CAS  Google Scholar 

  39. Filoneko GK. Hydraulic resistance in pipes. Teploenergetikal. 1954;1:40–4.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the Petroleum University of Technology (PUT) for providing financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Solaimany Nazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motevasel, M., Solaimany Nazar, A.R. & Jamialahmadi, M. Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles. J Therm Anal Calorim 135, 133–143 (2019). https://doi.org/10.1007/s10973-018-7314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7314-8

Keywords

Navigation