Skip to main content
Log in

Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP

Investigating thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mesoporous diatomite platelets were used for in situ copolymerization of styrene and butyl acrylate by activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) to synthesize tailor-made poly(styrene-co-butyl acrylate) nanocomposites. FTIR spectroscopy, nitrogen adsorption/desorption isotherm and thermo-gravimetric analysis (TGA) were employed for evaluating some inherent properties of the pristine diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Addition of 3 mass% pristine mesoporous diatomite leads to increase in conversion from 69 to 83%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 7920 to 9940 g mol−1 by addition of 3 mass% pristine mesoporous diatomite; however, Đ values increase from 1.17 to 1.45. Appropriate agreement between theoretical and experimental molecular weight in combination with low Đ values can appropriately demonstrate the living nature of copolymerization. Copolymers composition was evaluated using 1H NMR spectroscopy. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 33 to 36 °C by adding 3 mass% of mesoporous diatomite platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rao Y, Pochan JM. Mechanics of polymer–clay nanocomposites. Macromolecules. 2007;40:290–6.

    Article  CAS  Google Scholar 

  2. Kumara A, Ghosha PK, Yadavb KL, Kumar K. Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos Part B Eng. 2017;113:291.

    Article  Google Scholar 

  3. Janowska G, Mikołajczyk T, Olejnik M. Thermal properties and flammability of fibres made from polyimidoamide nanocomposite. J Therm Anal Calorim. 2007;88:843–9.

    Article  CAS  Google Scholar 

  4. Khezri K, Mahdavi H. Polystyrene-silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP. Microporous Mesoporous Mater. 2016;228:132–40.

    Article  CAS  Google Scholar 

  5. Nguyen Q, Baird D. Preparation of polymer–clay nanocomposites and their properties. Adv Polym Technol. 2006;25:270–85.

    Article  CAS  Google Scholar 

  6. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  7. Fazli Y, Khezri K. Mesoporous diatomite-filled PMMA by in situ reverse atom transfer radical polymerization. Colloid Polym Sci. 2017;295:247.

    Article  CAS  Google Scholar 

  8. Roghani-Mamaqani H, Khezri K. Polystyrene-attached graphene nanolayers by reversible addition-fragmentation chain transfer polymerization: a grafting from epoxy groups with various densities. J Polym Res. 2016;23:190–204.

    Article  Google Scholar 

  9. Nenadovic S, Nenadovic M, Kovacevic R, Matovic L, Matovic B, Jovanovic Z, Grbovic Novakovic J. Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci Sinter. 2009;41:309–17.

    Article  CAS  Google Scholar 

  10. Jung K, Jang D, Ahn K. A novel approach for improvement of purity and porosity in diatomite (diatomaceous earth) by applying an electric field. Int J Miner Process. 2014;131:7–11.

    Article  CAS  Google Scholar 

  11. Jian Z, Qingwei P, Meihong N, Haiqiang S, Na L. Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Appl Clay Sci. 2013;83–84:12–6.

    Google Scholar 

  12. Al-Ghouti MA, Khraisheh MAM, Ahmad MN, Allen SJ. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite. J Hazard Mater. 2007;146:316–27.

    Article  CAS  Google Scholar 

  13. Guo S, Shi L. Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts. Catal Today. 2013;212:137–41.

    Article  CAS  Google Scholar 

  14. Caliskan N, Kul AR, Alkan S, Sogut EG, Alacabey I. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study. J Hazard Mater. 2011;193:27–36.

    Article  CAS  Google Scholar 

  15. Sheng G, Dong H, Li Y. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact. 2012;113:108–15.

    Article  CAS  Google Scholar 

  16. Yuan P, Liu D, Tan D, Liu K, Yu H, Zhong Y, Yuan A, Yu W, He H. Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption: the effects of heating pretreatment. Microporous Mesoporous Mater. 2013;170:9–19.

    Article  CAS  Google Scholar 

  17. Jiang L, Liu L, Xiao S, Chen J. Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chem Eng J. 2016;284:609.

    Article  CAS  Google Scholar 

  18. Zetterlund PB, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems. Chem Rev. 2008;108:3747–94.

    Article  CAS  Google Scholar 

  19. Sarsabili M, Kalantari K, Khezri K. SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles. J Therm Anal Calorim. 2016;126:1261–72.

    Article  CAS  Google Scholar 

  20. Khezri K, Fazli Y. Synthesis and characterization of poly (styrene-co-butyl acrylate)/silica aerogel nanocomposites by in situ AGET ATRP: investigating thermal properties. High Temp Mater Process. 2016. doi:10.1515/htmp-2015-0244.

  21. Kagawa Y, Zetterlund PB, Minami H, Okubo M. Compartmentalization in atom transfer radical polymerization (ATRP) in dispersed systems. Macromol Theory Simul. 2006;15:608–13.

    Article  CAS  Google Scholar 

  22. Roghani-Mamaqani H, Khezri K. A grafting from approach to graft polystyrene chains at the surface ofgraphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci. 2016;360:373–82.

    Article  CAS  Google Scholar 

  23. Chmielarz P. Synthesis of multiarm star block copolymers via simplified electrochemically mediated ATRP. Chem Paper. 2017;71:161.

    Article  CAS  Google Scholar 

  24. Sarsabili M, Rahmatolahzadeh R, Shobeiri SA, Hamadanian M, Farazin A, Khezri K. Reverse atom transfer radical random copolymerization of styrene and methyl methacrylate in the presence of diatomite nanoplatelets. Polym Adv Technol. 2017. doi:10.1002/pat.4131.

    Google Scholar 

  25. Karaman S, Karaipekli A, Sarı A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Solar Energy Mater Solar Cells. 2011;95:1647–53.

    Article  CAS  Google Scholar 

  26. Li X, Bian C, Chen W, He J, Wang Z, Xu N, Xue G. Polyaniline on surface modification of diatomite: a novel way to obtain conducting diatomite fillers. Appl Surf Sci. 2003;207:378–83.

    Article  CAS  Google Scholar 

  27. Li X, Li X, Wang G. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method. Appl Surf Sci. 2005;249:266–70.

    Article  CAS  Google Scholar 

  28. Hu S, Zhu X, Hu W, Yan L, Cai C. Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites. Polym Bull. 2013;70:517–33.

    Article  CAS  Google Scholar 

  29. Liang JZ. Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polym Test. 2008;27:936–40.

    Article  CAS  Google Scholar 

  30. Garderen N, Clemens FJ, Mezzomo M, Bergmann CP, Graule T. Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Appl Clay Sci. 2011;52:115–21.

    Article  Google Scholar 

  31. Sun Z, Yang X, Zhang G, Zheng S, Frost RL. A novel method for purification of low grade diatomite powders in centrifugal fields. Int J Miner Process. 2013;125:18–26.

    Article  CAS  Google Scholar 

  32. Liu D, Yuan P, Tan D, Liu H, Wang T, Fan M, Zhu J, He H. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products. J Colloid Interface Sci. 2012;388:176–84.

    Article  CAS  Google Scholar 

  33. Zhang L, Cheng Z, Lu Y, Zhu X. A highly active iron-based catalyst system for the AGET ATRP of styrene. Macromol Rapid Commun. 2009;30:543–7.

    Article  CAS  Google Scholar 

  34. Davoudizadeh S, Sarsabili M, Khezri K. Synthesis and characterization of polystyrene/mesoporous diatomite composites via activators generated by electron transfer for atom transfer radical polymerization. Z Phys Chem. 2017;231:1543.

    Article  CAS  Google Scholar 

  35. Wu D, Yang Y, Cheng X, Liu L, Tian J, Zhao H. Mixed molecular brushes with PLLA and PS side chains prepared by AGET ATRP and ring-opening polymerization. Macromolecules. 2006;39:7513–9.

    Article  CAS  Google Scholar 

  36. Asfadeh A, Haddadi-Asl V, Salami-Kalajahi M, Sarsabili M, Roghani-Mamaqani H. Investigating the effect of MCM-41 nanoparticles on the kinetics of atom transfer radical polymerization of styrene. NANO. 2013;8:1350018.

    Article  Google Scholar 

  37. Khezri K, Fazli Y. Characterization of diatomite platelets and its application for in situ atom transfer radical random copolymerization of styrene and butyl acrylate: normal approach. J Inorg Organomet Polym. 2017;27:266–74.

    Article  CAS  Google Scholar 

  38. Khezri K, Fazli Y. Polystyrene/mesoporous diatomite composites by in situ simultaneous reverse and normal initiation technique for atom transfer radical polymerization. Polym Sci Ser B. 2017;59:109–16.

    Article  CAS  Google Scholar 

  39. Khezri K, Najafi M, Roghani-Mamaqani H. Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers. J Polym Res. 2017;24:34–46.

    Article  Google Scholar 

  40. Khezri K, Mahdavi H. Polystyrene–silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP. Microporous Mesoporous Mater. 2016;228:132.

    Article  CAS  Google Scholar 

  41. Khezri K. Polystyrene–mesoporous diatomite composites produced by in situ activators regenerated by electron transfer atom transfer radical polymerization. RSC Adv. 2016;6:109286–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khezrollah Khezri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudizadeh, S., Ghasemi, M., Khezri, K. et al. Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. J Therm Anal Calorim 131, 2513–2521 (2018). https://doi.org/10.1007/s10973-017-6771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6771-9

Keywords

Navigation