Skip to main content
Log in

SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles

Investigating thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrophilic silica aerogel nanoparticles’ surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS). Then, the resultant functionalized nanoparticles were used in grafting through copolymerization of styrene and butyl acrylate by simultaneous reverse and normal initiation technique for atom transfer radical copolymerization (SR&NI ATRP) to synthesize tailor-made random poly (styrene-co-butyl acrylate) nanocomposites with twofold chains. Successful surface modification of hydrophilic silica aerogel nanoparticles with MPS is demonstrated by Fourier transform infrared spectroscopy and thermogravimetric analysis (TG). Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the synthesized silica aerogel nanoparticles. Evaluation of size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Addition of MPS-functionalized nanoparticles by 3 mass% results in a decrease in conversion from 71 to 46 %. Molecular weight (M n) of the free poly (styrene-co-butyl acrylate) chains decreases by adding 3 mass% MPS-functionalized silica aerogel nanoparticles; however, polydispersity index (PDI) value increases from 1.17 to 1.48. Although PDI values of the attached poly (styrene-co-butyl acrylate) chains are increased from 1.54 to 1.76, M n values reveal an increment by adding silica aerogel nanoparticles. 1H NMR spectroscopy results indicate that the molar ration of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of the monomers. Increasing thermal stability of the nanocomposites is demonstrated by TG. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fu X, Qutubuddin S. Polymer. 2001;42:807–13.

    Article  CAS  Google Scholar 

  2. Li X, Huang C, Yang H, Li Y, Cheng Y. J Therm Anal Calorim. 2016;124:899–907.

    Article  CAS  Google Scholar 

  3. Hasan M, Kumar R, Barakat MA, Lee M. RSC Adv. 2015;5:14393–9.

    Article  CAS  Google Scholar 

  4. Wei L, Hu N, Zhang Y. Materials. 2010;3:4066.

    Article  CAS  Google Scholar 

  5. Nguyen Q, Baird D. Adv Polym Technol. 2006;25:270–85.

    Article  CAS  Google Scholar 

  6. Malucelli G, Alongi J, Gioffredi E, Lazzari M. J Therm Anal Calorim. 2013;111:1303–10.

    Article  CAS  Google Scholar 

  7. Ribeiro T, Baleizão C, Farinha JPS. Materials. 2014;7:3881–900.

    Article  CAS  Google Scholar 

  8. Ji X, Hampsey JE, Hu Q, He J, Yang Z, Lu Y. Chem Mater. 2003;15:3656–62.

    Article  CAS  Google Scholar 

  9. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H. NANO 2014; 9, Art Number: 1450023.

  10. Cabanas A, Enciso E, Carbajo MC, Torralvo MJ, Pando C, Renuncio JAR. Chem Mater. 2005;17:6137–45.

    Article  CAS  Google Scholar 

  11. Logar NZ, Kaučič V. Acta Chim Slov. 2006;53:117–35.

    CAS  Google Scholar 

  12. Zhang J, Grischkowsky D. J Phys Chem B. 2004;108:18590–600.

    Article  CAS  Google Scholar 

  13. Davis ME. Nature. 2002;417:813–21.

    Article  CAS  Google Scholar 

  14. Wei T, Lu S, Chang Y. J Phys Chem B. 2008;112:11881–6.

    Article  CAS  Google Scholar 

  15. Bandi S, Bell M, Schiraldi DA. Macromolecules. 2005;38:9216–20.

    Article  CAS  Google Scholar 

  16. Hwang S-W, Kim T-Y, Hyun S-H. Microporous Mesoporous Mater. 2010;130:295–302.

    Article  CAS  Google Scholar 

  17. Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernst RD, Eyring EM, Shah N, Huffman GP. Appl Catal A Gen. 2005;278:233–8.

    Article  CAS  Google Scholar 

  18. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T. Appl Surf Sci. 2003;206:262–70.

    Article  CAS  Google Scholar 

  19. Cha J, Kim S, Park K-W, Lee DR, Jo J-H, Kim S. J Therm Anal Calorim. 2014;116:219–24.

    Article  CAS  Google Scholar 

  20. Sarawade PB, Kim J-K, Hilonga A, Kim HT. Sol. State Sci. 2010;12:911–8.

    Article  CAS  Google Scholar 

  21. Gelb LD. J Phys Chem C. 2007;111:15792–802.

    Article  CAS  Google Scholar 

  22. Tao Y, Endo M, Kaneko K. Rec Pat Chem Eng. 2008;1:192–200.

    Article  CAS  Google Scholar 

  23. Braunecker W, Matyjaszewski K. Prog Polym Sci. 2007;32:93–146.

    Article  CAS  Google Scholar 

  24. Oh JK. J Polym Sci Part A Polym Chem. 2008;46:6983–7001.

    Article  CAS  Google Scholar 

  25. Cunningham MF. Prog Polym Sci. 2008;33:365–98.

    Article  CAS  Google Scholar 

  26. Matyjaszewski K, Xia J. Chem Rev. 2001;101:2921–90.

    Article  CAS  Google Scholar 

  27. Demirelli K, Kaya E, Coşkun M, Bağci E. J Therm Anal Calorim. 2013;114:917–26.

    Article  CAS  Google Scholar 

  28. Bauri K, Roy SG, Arora S, Dey RK, Goswami A, Madras G, De P. J Therm Anal Calorim. 2013;111:753–61.

    Article  CAS  Google Scholar 

  29. Sarbu T, Pintauer T, Mckenzie B, Matyjaszewski K. J Polym Sci Part A Polym Chem. 2002;40:3153–60.

    Article  CAS  Google Scholar 

  30. Min K, Matyjaszewski K. Cent Eur J Chem. 2009;7:657–74.

    CAS  Google Scholar 

  31. Pyun J, Matyjaszewski K. Chem Mater. 2001;13:3436–48.

    Article  CAS  Google Scholar 

  32. Ver Meer MA, Narasimhan B, Shanks BH, Mallapragada SK. ACS Appl Mater Interfaces. 2010;2:41–7.

    Article  CAS  Google Scholar 

  33. He J, Duan X, Evans DG. J Porous Mater. 2002;9:49–56.

    Article  CAS  Google Scholar 

  34. Ding S, Liu B, Zhang C, Wu Y, Xu H, Qu X, Liu J, Yang Z. J Mater Chem. 2009;19:3443–8.

    Article  CAS  Google Scholar 

  35. Lowes BJ, Bohrer AG, Tran T, Shipp DA. Polym Bull. 2009;62:281–9.

    Article  CAS  Google Scholar 

  36. Sarsabili M, Parvini M, Salami-kalajahi M, Ganjeh-anzabi P. Adv Polym Technol. 2013;32:21372–83.

    Article  Google Scholar 

  37. Li Z, Zhang K, Ma J, Cheng C, Wooley KL. J Polym Sci Part A Polym Chem. 2009;47:5557–63.

    Article  CAS  Google Scholar 

  38. Boday DJ, Keng PY, Muriithi B, Pyun J, Loy DA. J Mater Chem. 2010;20:6863–5.

    Article  CAS  Google Scholar 

  39. Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari S-A, Khezri K. J Sol–Gel Sci Technol. 2013;66:337–44.

    Article  CAS  Google Scholar 

  40. Chen-Yang YW, Wang YL, Chen YT, Li YK, Chen HC, Chiu HY. J Power Sources. 2008;182:340–8.

    Article  CAS  Google Scholar 

  41. Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT, Obrey KAD, Loy DA. ASC Appl Mater Interfaces. 2009;1:1364–9.

    Article  CAS  Google Scholar 

  42. Costela A, Moreno IG, Gómez C, García O, Sastre R, Roig A, Molins E. J Phys Chem B. 2005;109:4475–80.

    Article  CAS  Google Scholar 

  43. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M. J Appl Polym Sci. 2012;124:2278–86.

    Article  CAS  Google Scholar 

  44. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M. Polym Compos. 2011;32:1979–87.

    Article  CAS  Google Scholar 

  45. Mirshafiei-Langari S, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. Polym Compos. 2013;34:1648–54.

    Article  CAS  Google Scholar 

  46. Mirshafiei-Langari S-A, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. J Polym Res. 2013;20:163–74.

    Article  Google Scholar 

  47. Xi J, Qiu X, Zhu W, Tang X. Microporous Mesoporous Mater. 2006;88:1–7.

    Article  CAS  Google Scholar 

  48. Tang W, Matyjaszewski K. Macromol Theory Simul. 2008;17:359–75.

    Article  CAS  Google Scholar 

  49. Min K, Li M, Matyjaszewski K. J Polym Sci Part A Polym Chem. 2005;43:3616–22.

    Article  CAS  Google Scholar 

  50. Li M, Min K, Matyjaszewski K. Macromolecules. 2004;37:2106–12.

    Article  CAS  Google Scholar 

  51. Li M, Jahed NM, Min K, Matyjaszewski K. Macromolecules. 2004;37:2434–41.

    Article  CAS  Google Scholar 

  52. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M. Polym Compos. 2010;31:1829–37.

    Article  CAS  Google Scholar 

  53. Roghani-mamaqani H, Haddadi-Asl V, Najafi M, Salami-kalajahi M. AIChE J. 2011;57:1873–81.

    Article  CAS  Google Scholar 

  54. Khezri K, Roghani-Mamaqani H, Sarsabili M, Sobani M, Mirshafiei-Langari S. Polym Sci Ser B. 2014;56:909–18.

    Article  CAS  Google Scholar 

  55. Samakande A, Sanderson RD, Hartmann PC. J Polym Sci Part A Polym Chem. 2008;46:7114–26.

    Article  CAS  Google Scholar 

  56. Sarsabili M, Parvini M, Salami-Kalajahi M, Asfadeh A. Iran Polym J. 2013;22:155–63.

    Article  CAS  Google Scholar 

  57. Matyjaszewski K, Qiu J, Tsarevsky NV, Charleux B. J Polym Sci Part A Polym Chem. 2000;38:4724–34.

    Article  CAS  Google Scholar 

  58. Asfadeh A, Haddadi-Asl V, Salami-Kalajahi M, Sarsabili M, Roghani-Mamaqani H. Nano 2013;8, Art Number: 1350018.

  59. Ahmadian-Alam L, Haddai-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M. J Polym Res. 2012;19:9773–85.

    Article  Google Scholar 

  60. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M. J Polym Eng. 2012;32:111–9.

    CAS  Google Scholar 

  61. Subramania S, Choia SW, Lee JY, Kim JH. Polymer. 2007;48:4691–703.

    Article  Google Scholar 

  62. Sobani M, Haddadi-Asl V, Mirshafiei-Langari S-A, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K. Des Monomers Polym. 2014;17:245–54.

    Article  CAS  Google Scholar 

  63. Khezri K, Roghani-Mamaqani H. Mater Res Bull. 2014;59:241–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khezrollah Khezri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarsabili, M., Kalantari, K. & Khezri, K. SR&NI atom transfer radical random copolymerization of styrene and butyl acrylate in the presence of MPS-functionalized silica aerogel nanoparticles. J Therm Anal Calorim 126, 1261–1272 (2016). https://doi.org/10.1007/s10973-016-5641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5641-1

Keywords

Navigation