Skip to main content
Log in

Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of mechanical activation on carbothermic reduction kinetics and mechanism of ilmenite concentrate containing self-reducing mixture has been investigated using a combination of thermogravimetry and X-ray diffraction. Thermogravimetric comparative study of mechanically activated and non-activated ilmenite concentrate containing self-reducing mixtures with C/O molar ratio of 1.5 was conducted non-isothermally. The samples were heated up to 1573 K at three different heating rates (10, 15, and 20 K min−1) under controlled atmosphere. The reduction mechanism of mechanically activated mixture was followed by X-ray diffraction analysis of arrested samples at different reduction extents. In addition, reaction kinetics was further investigated and corresponding kinetic parameters were estimated using isoconversional (model-free) and model-fitting (Coats–Redfern) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baláž P. Extractive metallurgy of activated minerals. Amsterdam: Elsevier; 2000.

    Google Scholar 

  2. Zdujić M, Jovalekić Č, Karanović L, Mitrić M, Poleti D, Skala D. Mechanochemical treatment of α-Fe2O3 powder in air atmosphere. Mater Sci Eng A. 1998;245(1):109–17.

    Article  Google Scholar 

  3. Kosmac T, Courtney T. Milling and mechanical alloying of inorganic nonmetallics. J Mater Res. 1992;7(06):1519–25.

    Article  CAS  Google Scholar 

  4. Pourghahramani P, Forssberg E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods. Thermochim Acta. 2007;454(2):69–77.

    Article  CAS  Google Scholar 

  5. Hu H, Chen Q, Yin Z, Zhang P, Zou J, Che H. Study on the kinetics of thermal decomposition of mechanically activated pyrites. Thermochim Acta. 2002;389(1):79–83.

    Article  CAS  Google Scholar 

  6. Hu H, Chen Q, Yin Z, Zhang P, Ye L. The thermal behavior of mechanically activated galena by thermogravimetry analysis. Metall Mater Trans A. 2003;34(3):793–7.

    Article  Google Scholar 

  7. Hu H, Chen Q, Yin Z, Zhang P. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG). Thermochim Acta. 2003;398(1):233–40.

    Article  CAS  Google Scholar 

  8. Chen Q, Yin Z, Zhang P, Hu H, Ye L. The oxidation behavior of unactivated and mechanically activated sphalerite. Metall Mater Trans B. 2002;33(6):897–900.

    Article  Google Scholar 

  9. Welham N. Activation of the carbothermic reduction of manganese ore. Int J Miner Process. 2002;67(1):187–98.

    Article  CAS  Google Scholar 

  10. Leyens C, Peters M. Titanium and titanium alloys. Wiley Online Library; 2003.

  11. Wouterlood HJ. The reduction of ilmenite with carbon. J Chem Technol Biotechnol. 1979;29(10):603–18.

    Article  CAS  Google Scholar 

  12. El-Tawil S, Morsi I, Francis A. Kinetics of solid-state reduction of ilmenite ore. Can Metall Q. 1993;32(4):281–8.

    Article  CAS  Google Scholar 

  13. El-Tawil S, Morsi I, Yehia A, Francis A. Alkali reductive roasting of ilmenite ore. Can Metall Q. 1996;35(1):31–7.

    Article  Google Scholar 

  14. Chen Y, Hwang T, Marsh M, Williams J. Mechanically activated carbothermic reduction of ilmenite. Metall Mater Trans A. 1997;28(5):1115–21.

    Article  Google Scholar 

  15. Kucukkaragoz C, Eric R. Solid state reduction of a natural ilmenite. Miner Eng. 2006;19(3):334–7.

    Article  CAS  Google Scholar 

  16. Kirakosyan H, Minasyan T, Niazyan O, Aydinyan S, Kharatyan S. DTA/TG study of CuO and MoO3 co-reduction by combined Mg/C reducers. J Therm Anal Calorim. 2016;123(1):35–41.

    Article  CAS  Google Scholar 

  17. Sun Y, Han Y, Wei X, Gao P. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim. 2016;123(1):703–15.

    Article  CAS  Google Scholar 

  18. Šimon P. Isoconversional methods. J Therm Anal Calorim. 2004;76(1):123–32.

    Article  Google Scholar 

  19. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst. 2009;96(2):219–26.

    Article  CAS  Google Scholar 

  20. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429(1):93–102.

    Article  CAS  Google Scholar 

  21. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436(1):101–12.

    Article  CAS  Google Scholar 

  22. Brown M, Dollimore D, Galwey A. Theory of solid state reaction kinetics. Compr Chem Kinet. 1980;22:41–113.

    Article  Google Scholar 

  23. Coats A, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68.

    Article  CAS  Google Scholar 

  24. Ebrahimi-Kahrizsangi R, Abbasi M. Evaluation of reliability of Coats–Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferr Metals Soc China. 2008;18(1):217–21.

    Article  CAS  Google Scholar 

  25. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429(1):93–102.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Computational aspects of kinetic analysis: part C. The ICTAC kinetics project—the light at the end of the tunnel? Thermochim Acta. 2000;355(1):155–63.

    Article  CAS  Google Scholar 

  27. Maciejewski M. Computational aspects of kinetic analysis: part B: The ICTAC kinetics project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355(1):145–54.

    Article  CAS  Google Scholar 

  28. Burnham AK. Computational aspects of kinetic analysis.: part D: the ICTAC kinetics project—multi-thermal–history model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355(1):165–70.

    Article  CAS  Google Scholar 

  29. Roduit B. Computational aspects of kinetic analysis.: part E: the ICTAC kinetics project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355(1):171–80.

    Article  CAS  Google Scholar 

  30. Ortega A. Some successes and failures of the methods based on several experiments. Thermochim Acta. 1996;284(2):379–87.

    Article  CAS  Google Scholar 

  31. Opfermann J, Kaisersberger E, Flammersheim H. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391(1):119–27.

    Article  CAS  Google Scholar 

  32. Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56(10):978.

    Article  CAS  Google Scholar 

  33. Bhadeshia H, Honeycombe R. Steels: microstructure and properties: microstructure and properties. Oxford: Butterworth-Heinemann; 2011.

    Google Scholar 

Download references

Acknowledgements

The project was conducted within CAMM—Centre of Advanced Mining and Metallurgy at Luleå University of Technology, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. El-Sadek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sadek, M.H., Ahmed, H.M., El-Barawy, K. et al. Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J Therm Anal Calorim 131, 2457–2465 (2018). https://doi.org/10.1007/s10973-017-6743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6743-0

Keywords

Navigation