Skip to main content
Log in

Mechanically activated carbothermic reduction of ilmenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A systematic study of the effect of milling conditions on the low-temperature carbothermic reduction of the mineral ilmenite has been carried out. It was found that after ball milling of an ilmenite-carbon mixture at room temperature, the ilmenite was reduced to rutile and metallic iron during subsequent low-temperature annealing (760 °C for 30 minutes). A longer milling time results in a lower reduction temperature and a higher reduction rate. Higher milling intensity also leads to a lower reduction temperature. This enhanced reduction reaction induced by ball milling mainly results from the intimate mixing and large contact area between milled ilmenite and carbon particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Miller and A. Titanium: Materials Survey, Bureau of Mines Information Circular, 1957, vol. 7791, pp. 202–10.

    Google Scholar 

  2. T.S. Mackey: JOM, 1994, Apr., pp. 59–64.

  3. J.J. Henn and J.A. Barclay: J. Appl. Chem. Biotechnol., 1975, vol. 25, pp. 561–63.

    Google Scholar 

  4. R.G. Becher: Australian Patent 241,110, 1963.

  5. R.G. Becher, R.G. Canning, B.A. Goodheat, and S. Uusna: Proc. Australian Inst. Min. Metall., 1965, vol. 214, pp. 21–44.

    Google Scholar 

  6. S.K. Gupta, V. Rajakumar, and P. Grieveson: Metall. Trans. B, 1987, vol. 18B, pp. 713–18.

    CAS  Google Scholar 

  7. M.I. El-Guindy and W.G. Davenport: Metall. Trans., 1970, vol. 1, p. 1729–34.

    CAS  Google Scholar 

  8. I.E. Grey, D.G. Jones, and A.F. Reid: Trans. Inst. Min. Metall., 1973, vol. 82, pp. C151–152.

    CAS  Google Scholar 

  9. I.E. Grey and A.F. Reid: Trans. Inst. Min. Metall., 1974, vol. 83, pp. C39–46.

    CAS  Google Scholar 

  10. I.E. Grey, A.F. Reid, and D.G. Jones: Trans. Inst. Min. Metall., 1974, vol. 83, pp. C105–111.

    CAS  Google Scholar 

  11. B.P. Mohanty and K.A. Smith: Trans. Inst. Min. Metall., 1993, vol. 102, pp. C163-C173.

    Google Scholar 

  12. Y. Chen, Z.L. Li, and J.S. Williams: J. Mater. Sci. Lett., 1995, vol. 14, pp. 542–44.

    Article  CAS  Google Scholar 

  13. Y. Chen, B.W. Ninham, and V. Ogarev: Scripta Metall. Mater., 1995, vol. 32 (1), pp. 19–24.

    Article  CAS  Google Scholar 

  14. Y. Chen, J.S. Williams, and G.M. Wang: J. Appl. Phys., 1996, vol. 79 (8), pp. 3956–62.

    Article  Google Scholar 

  15. Y. Chen, T. Hwang, and J.S. Williams: Mater. Lett., in press.

  16. Available from ANUtech Pty Ltd., Australian National University, Canberra, Australia.

  17. Kinetic analysis (TG) program for Shimadzu thermal analysis system, Instruction Manual, Shimadzu, Kyoto, 1990.

  18. A. Guinier: Théorie et Technique de la Radio-Crystallographie, (Paris, Dundod, 1956), pp. 256–59.

    Google Scholar 

  19. S.E. El-Tawil, I.M. Morsi, and A.A. Francis: Can. Metall. Q., 1993, vol. 32 (4), pp. 281–88.

    CAS  Google Scholar 

  20. R. Haque and H.S. Ray: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 400–04.

    CAS  Google Scholar 

  21. Provisional Patent Application No. PN7253/95, Australia.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Hwang, T., Marsh, M. et al. Mechanically activated carbothermic reduction of ilmenite. Metall Mater Trans A 28, 1115–1121 (1997). https://doi.org/10.1007/s11661-997-0277-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0277-1

Keywords

Navigation