Skip to main content
Log in

Combustion characteristics of activated carbon particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, combustion of activated carbon particles was conducted using a thermogravimetric (TG) analyzer and a small-scale fluidized bed test bench. The combustion characteristics of activated carbon particles have been analyzed under different process conditions. The three-dimensional diffusion geometry anti-Jander model has been used to describe the combustion of activated carbon. By using the isothermal differential characteristics, activation energy values under different conversion rates have been obtained, which were then compared with the activation energy values obtained from the TG analyzer. The results showed that the two kinds of activation energy values were similar under low conversion rates. On the basis of TG combustion data, the AKTS software was employed to forecast the mass loss curve of activated carbon combustion under the condition of constant temperature. The curve was compared with the mass loss curve obtained from the fluidized bed. Finally, a comparison was drawn between the fluidized bed combustion and TG combustion for similarities and differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Junzhi Wu, Wang Baofeng, Cheng Fangqin. Thermal and kinetic characteristics of combustion of coal sludge. J Therm Anal Calorim. 2017;129:1899–909.

    Article  Google Scholar 

  2. Shi Yanyan, Li Shuyuan, Haoquan Hu, et al. Studies on pyrolysis characteristic of lignite and properties of its pyrolysates. J Anal Appl Pyrol. 2012;95:75–8.

    Article  CAS  Google Scholar 

  3. Geng Cengceng, Li Shuyuan, Yue Changtao, et al. Pyrolysis characteristics of bituminous coal. J Energy Inst. 2016;89:72–730.

    Article  Google Scholar 

  4. Naktiyok J, Bayrakceken H, Özer AK, et al. Investigation of combustion kinetics of Umutbaca-lignite by thermal analysis technique. J Therm Anal Calorim. 2017;129:531–9.

    Article  CAS  Google Scholar 

  5. Yang Yu, Xiaoxu Fu, Lili Yu, et al. Combustion kinetics of pine sawdust biochar. J Therm Anal Calorim. 2016;124:1641–9.

    Article  Google Scholar 

  6. Liu Xiang, Chen Meiqian, Wei Yuanghang. Kinetics based on two-stage for co-combustion of herbaceous biomass and bituminous coal. Fuel. 2015;143:577–83.

    Article  CAS  Google Scholar 

  7. Stenseng M, Zolin A, Cenni R, et al. Thermal analysis in combustion research. J Therm Anal Calorim. 2001;64:1325–34.

    Article  CAS  Google Scholar 

  8. Magdziarz A, Malgorzata W. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.

    Article  CAS  Google Scholar 

  9. Han XX, Jiang XM, Cui ZG. Study of the combustion mechanism of shale semicoke in a thermgravimetric analyzer. J Therm Anal Calorim. 2008;92(2):595–600.

    Article  CAS  Google Scholar 

  10. Chen D, Jiang X, Lv S, et al. Thermal treatment of Indonesian lignite washery tailing. Part 2. Kinetic analysis. J Therm Anal Calorim. 2016;123:1735–42.

    Article  CAS  Google Scholar 

  11. Wang Qing, Zhao Weizhen, Liu Hongpeng. Interaction and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl Energy. 2011;88:2080–7.

    Article  CAS  Google Scholar 

  12. Al-Farraji A, Marsh R, Steer J. A comparison of the pyrolysis of olive kernel biomass in fluidised and fixed bed conditions. Waste Biomass Valorization. 2017;8:1273–84.

    Article  CAS  Google Scholar 

  13. Bockhorn H, Hornung A, Hornung U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J Anal Appl Pyrol. 1999;50:77–101.

    Article  CAS  Google Scholar 

  14. Py X, Daguerre E. Pitch pyrolysis kinetics: isothermal heat treatment experiment and model. Fuel. 2000;79:591–8.

    Article  CAS  Google Scholar 

  15. Brunello S, Flour I, Maïssa P, et al. Kinetic study of char combustion in a fluidized bed. Fuel. 1996;75(5):536–44.

    Article  CAS  Google Scholar 

  16. Jiang Xuguang, Chen Danhan, Ma Zengyi, et al. Models for the combustion of single solid fuel particle in fluidized beds: a review. Renew Sustain Energy Rev. 2017;68:410–31.

    Article  CAS  Google Scholar 

  17. Jian Yu, Zeng Xi, Zhang Juwei, et al. Isothermal differential characteristics of gas-soild reaction in micro-fluidized bed reactor. Fuel. 2013;103:29–36.

    Article  Google Scholar 

  18. Chern JS, Hayhust AN. A simple theoretical analysis of the pyrolysis of an isothermal particle of coal. Combust Flame. 2010;157(2):925–33.

    Article  CAS  Google Scholar 

  19. Chern JS, Hayhust AN. Fludiised bed studies of: (i) reaction-fronts inside a coal particle during its pyrolysis or devolatilisation, (ii) the combustion of carbon in various coal chars. Combust Flame. 2012;159:367–75.

    Article  CAS  Google Scholar 

  20. Sadhukhan AK, Gupta P, Saha RK. Modeling and experimental studies on single particle coal devolatilization and residual char combustion in fluidized bed. Fuel. 2011;90:2132–41.

    Article  CAS  Google Scholar 

  21. Sadhukhan AK, Gupta P, Saha RK. Modeling of combustion characteristics of hig ash coal particles at high pressure: shrinking reactive core model. Fuel. 2010;89:162–9.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Goryachko V. Potentialities of software for kinetic processing of thermoanalytic data by the isoconversion method. Thermochim Acta. 1992;194:221–30.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in soilds: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.

    Article  CAS  Google Scholar 

  24. Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal Calorim. 1983;27:95–102.

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymer. J Res Natl Bur Stand. 1996;70:487–523.

    Google Scholar 

  26. Wall LA, Straus S, Flynn JH, et al. The thermal degradation mechanism of polystyrene. J Phys Chem. 1996;70(1):53–62.

    Article  Google Scholar 

  27. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  28. Ozawa T. Kinetics analysis of derivation curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  29. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6(1):183–95.

    Article  Google Scholar 

  30. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285(2):309–23.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Wigh CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solid. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  32. Hui S, Ling L, Fan Q, et al. Experimental study and kinetics analysis on pyrolysis characteristics of corn stalk. Therm Power Gener. 2014;43(4):69–75.

    CAS  Google Scholar 

  33. Hu RZ, Gao SL, Zhao FQ. Thermal analysis kinetics. Beijing: Science Press; 2001. p. 151–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongpeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Lu, M., Xu, P. et al. Combustion characteristics of activated carbon particles. J Therm Anal Calorim 130, 1191–1200 (2017). https://doi.org/10.1007/s10973-017-6730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6730-5

Keywords

Navigation