Skip to main content
Log in

Reaction mechanism and kinetic analysis of citrate gel-combustion synthesis of nanocrystalline urania

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reaction mechanism and the determination of kinetic parameters of the citrate gel combustion synthesis of nanocrystalline urania (U3O8) are being studied for the first time. The gel samples were subjected to simultaneous thermogravimetry–differential thermal analysis coupled with mass spectrometry to determine the reaction mechanism. The samples were also subjected to analysis by using differential scanning calorimeter to determine the kinetic parameters of the processes. It was observed that the combustion reaction took place in two steps followed by crystallization of uranium oxide to obtain nanocrystalline U3O8. The activation energy obtained (isoconversion method) for the first two steps of the reaction is 152 ± 6, 179 ± 7 kJ mol−1, whereas activation energy for the crystallization of urania is 166 ± 7 kJ mol−1 (isoconversion method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ganguly C. Sol–gel microsphere pelletization: a powder-free advanced process for fabrication of ceramic nuclear fuel pellets. Bull Mater Sci. 1993;16:509–22.

    Article  CAS  Google Scholar 

  2. Rondinella VV, Wiss T. The high burn-up structure in nuclear fuel. Mater Today. 2010;13:24–32.

    Article  CAS  Google Scholar 

  3. Fors P, Carbol P, Van Winckel S, Spahiu K. Corrosion of high burn-up structured UO2 fuel in presence of dissolved H2. J Nucl Mater. 2009;394:1–8.

    Article  CAS  Google Scholar 

  4. Noirot J, Desgranges L, Lamontagne J. Detailed characterisations of high burn-up structures in oxide fuels. J Nucl Mater. 2008;372:318–39.

    Article  CAS  Google Scholar 

  5. Teague M, Gorman B, Miller B, King J. EBSD and TEM characterization of high burn-up mixed oxide fuel. J Nucl Mater. 2014;444:475–80.

    Article  CAS  Google Scholar 

  6. Lemes M, Soba A, Denis A. An empirical formulation to describe the evolution of the high burnup structure. J Nucl Mater. 2015;456:174–81.

    Article  CAS  Google Scholar 

  7. Spino J, Santa Cruz H, Jovani-Abril R, Birtcher R, Ferrero C. Bulk-nanocrystalline oxide nuclear fuels—an innovative material option for increasing fission gas retention, plasticity and radiation-tolerance. J Nucl Mater. 2012;422:27–44.

    Article  CAS  Google Scholar 

  8. Cannas C, Musinu A, Peddis D, Piccaluga G. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol–gel autocombustion method. Chem Mater. 2006;18:3835–42.

    Article  CAS  Google Scholar 

  9. Zayat M, Levy D. Blue CoAl2O4 particles prepared by the sol–gel and citrate–gel methods. Chem Mater. 2000;12:2763–9.

    Article  CAS  Google Scholar 

  10. Sanjay Kumar D, Ananthasivan K, Venkata Krishnan R, Amirthapandian S, Dasgupta A. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method. J Nucl Mater. 2016;468:178–93.

    Article  CAS  Google Scholar 

  11. Sanjay Kumar D, Ananthasivan K, Venkata Krishnan R, Amirthapandian S, Dasgupta A. Studies on the synthesis of nanocrystalline Y2O3 and ThO2 through volume combustion and their sintering. J Nucl Mater. 2016;479:585–92.

    Article  CAS  Google Scholar 

  12. Budnyak TM, Yanovska ES, Kołodyńska D, Sternik D, Pylypchuk IV, Ischenko MV. Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim. 2016;125(3):1335–51.

    Article  CAS  Google Scholar 

  13. Bolbukh YN, Tertykh VA, Gawdzik B. TG and DSC studies of filled porous copolymers. J Therm Anal Calorim. 2006;86(1):125–32.

    Article  CAS  Google Scholar 

  14. Bolbukh Y, Kuzema P, Tertykh V, Laguta I. Thermal degradation of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. J Therm Anal Calorim. 2008;94(3):727–36.

    Article  CAS  Google Scholar 

  15. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113(1):169–77.

    Article  CAS  Google Scholar 

  16. Venkata Krishnan R, Panneerselvam G, Singh BM, Kothandaraman B, Jogeswararao G, Antony MP. Synthesis, characterization and thermal expansion measurements on uranium–cerium mixed oxides. J Nucl Mater. 2011;414(3):393–8.

    Article  CAS  Google Scholar 

  17. Leithe W. Oxidimetric nitrate analysis of fertilizers and other commercial products. Anal Chem. 1948;20:1082–4.

    Article  CAS  Google Scholar 

  18. Venkata Krishnan R, Nagarajan K. Heat capacity measurements on uranium–cerium mixed oxides by differential scanning calorimetry. Thermochim Acta. 2006;440:141–5.

    Article  CAS  Google Scholar 

  19. Zak AK, Abd. Majid WH, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011;13:251–6.

    Article  Google Scholar 

  20. Bamford CH, Tipper CFH, editors. Comprehensive chemical kinetics. Amsterdam: Elsevier; 1980.

    Google Scholar 

  21. Michael EB, Patrick KG, editors. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 2008.

    Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  24. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  25. Abu-Sehly AA. Variation of the activation energy of crystallization in Se81.5Te16Sb2.5 chalcogenide glass: isoconversional analysis. Thermochim Acta. 2009;485:14–9.

    Article  CAS  Google Scholar 

  26. Joraid AA. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 2007;456:1–6.

    Article  CAS  Google Scholar 

  27. Catalani A, Bonicelli MG. Kinetics of the curing reaction of a diglycidyl ether of bisphenol A with a modified polyamine. Thermochim Acta. 2005;438:126–9.

    Article  CAS  Google Scholar 

  28. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyński L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2011;104:731–5.

    Article  CAS  Google Scholar 

  29. Patil KC, Hedge MS, Rattan T, Aruna ST. Chemistry of nanocrystalline oxide materials. Singapore: World Scientific; 2008.

    Book  Google Scholar 

  30. Saberi A, Golestani-Fard F, Sarpoolaky H, Willert-Porada M, Gerdes T, Simon R. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate–citrate combustion route. J Alloys Compd. 2008;462:142–6.

    Article  CAS  Google Scholar 

  31. Zupan K, Novosel B, Marinšek M. Combustible precursor behaviour in the lanthanum chromite formation process. Mater Tehnol. 2011;5:439–45.

    Google Scholar 

  32. Balakrishnan S, Sanjay Kumar D, Ananthasivan K. Gel-combustion synthesis of nanocrystalline cerium oxide and its powder characteristics. Trans Indian Inst Met. 2015;68:243–52.

    Article  Google Scholar 

  33. Taylor P, McEachern RJ. Quantitative procedure to determine the rate of U3O8 formation on UO2. In: Proceedings of the fifth international conference on CANDU fuel, vol 31; 1997. p. 425–34.

  34. Vyazovkin S, Dranca I. Isoconversional analysis of combined melt and glass crystallization data. Macromole Chem Phys. 2006;207:20–5.

    Article  CAS  Google Scholar 

  35. Vyazovkin SV, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Thermochim Acta. 1990;165:273–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ananthasivan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjay Kumar, D., Ananthasivan, K., Venkata Krishnan, R. et al. Reaction mechanism and kinetic analysis of citrate gel-combustion synthesis of nanocrystalline urania. J Therm Anal Calorim 131, 2467–2476 (2018). https://doi.org/10.1007/s10973-017-6695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6695-4

Keywords

Navigation