Skip to main content
Log in

Preparation and properties of organomineral adsorbent obtained by sol–gel technology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organomineral nanocomposite material has been obtained by sol–gel method through in situ formation of inorganic network in the presence of organic polymer. The most common silica precursor tetraethoxysilane (TEOS) and polysaccharide chitosan solution were used for the sol–gel transformations. The obtained chitosan–silica nanocomposite has been characterized by the physicochemical methods such as differential scanning calorimetry–thermogravimetry–mass spectrometry, Fourier transform infrared spectroscopy–thermogravimetry, elemental analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy to determine possible interactions between silica and chitosan macromolecules. Thermal destruction and products from gaseous phase in atmosphere of air and nitrogen were studied. It was found that introducing chitosan in silica network drastically change behavior of polymer during heat treatment in inert atmosphere. Adsorption of microquantities of Zn(II), Cu(II), Fe(III), Cd(II) and Pb(II) cations from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously cross-linked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated. The obtained data were analyzed using the Langmuir and Freundlich isotherms, and the characteristic parameters for each isotherm were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Tibtech. 2000;18:282–96.

    Article  CAS  Google Scholar 

  2. Hench LL, West JK. The sol–gel process. Chem Rev. 1990;90:33–79.

    Article  CAS  Google Scholar 

  3. Mark JE. The sol–gel route to inorganic–organic composites. Heterog Chem Rev. 1996;3:307–26.

    Article  CAS  Google Scholar 

  4. Avnir D. Organic chemistry within ceramic matrixes: doped sol–gel materials. Acc Chem Res. 1995;28:328–37.

    Article  CAS  Google Scholar 

  5. Kołodyńska D. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem Eng J. 2011;173:520–9.

    Article  Google Scholar 

  6. Kołodyńska D. Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chem Eng J. 2012;179:33–43.

    Article  Google Scholar 

  7. Budnyak TM, Tetykh VA, Yanovska ES. Chitosan and its derivatives as sorbents for effective removal of metal ions. Surface. 2013;5:118–34.

    Google Scholar 

  8. Li CB, Hein S, Wang K. Biosorption of chitin and chitosan. Mater Sci Technol. 2008;24:1088–97.

    Article  CAS  Google Scholar 

  9. Kumar R, Majeti NV. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  CAS  Google Scholar 

  10. Hsien TY, Rorrer GL. Heterogeneous cross-linking of chitosan gel beads: kinetics, modeling, and influence on cadmium ion adsorption capacity. Ind Eng Chem Res. 1997;36:3631–8.

    Article  CAS  Google Scholar 

  11. Inoue K, Yoshizuka K, Baba Y, Gebelein C, Carraher C. Biotechnology and bioactive polymers. New York: Plenum Press; 1994.

    Google Scholar 

  12. Kawamura Y, Mitsuhashi M, Tanibe H, Yoshida H. Adsorption of metal–ions on polyaminated highly porous chitosan chelating resin. Ind Eng Chem Res. 1993;32:386–91.

    Article  CAS  Google Scholar 

  13. Alam MS, Inoue K, Yoshizuka K. Ion exchange/adsorption of rhodium(III) from chloride media on some anion exchangers. Hydrometallurgy. 1998;49:213–27.

    Article  CAS  Google Scholar 

  14. Ohga K, Kurauchi Y, Yanase H. Adsorption of Cu2+ or Hg2+ ions on resins prepared by crosslinking metal–complexed chitosans. Bull Chem Soc Jpn. 1987;60:444–6.

    Article  Google Scholar 

  15. McKay G, Blair HS, Grant S. Desorption of copper from a copper-chitosan complex. J Chem Technol Biotechnol. 1987;40:63–74.

    Article  CAS  Google Scholar 

  16. Domard A. pH and c.d. measurements on fully deacetylated chitosan: application to Cu(II)–polymer interactions. Int J Biol Macromol. 1987;9:98–104.

    Article  CAS  Google Scholar 

  17. Gonzalez-Davila M, Santana-Casiano JM, Millero FJ. The adsorption of Cd(ll) and Pb(ll) to chitin in seawater. J Colloid Interf Sci. 1990;137:102–10.

    Article  CAS  Google Scholar 

  18. Erosa MS, Medina TI, Mendoza RN, Rodriguez MA, Guibal E. Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy. 2001;61:157–67.

    Article  Google Scholar 

  19. Debbaudt AL, Ferreira ML, Gschaider ME. Theoretical and experimental study of M2+ adsorption on biopolymers III: comparative kinetic pattern of Pb, Hg and Cd. Carbohydr Polym. 2004;56:321–32.

    Article  CAS  Google Scholar 

  20. Chassary P, Vincent T, Guibal E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React Funct Polym. 2004;60:137–49.

    Article  CAS  Google Scholar 

  21. Guibal E, Milot C, Tobin J. Metal–anion sorption by chitosan beads: equilibrium a kinetic studies. Ind Eng Chem Res. 1998;37:1454–63.

    Article  Google Scholar 

  22. Mahmoud DK, Salleh MA, Karim WA. Langmuir model application on solid–liquid adsorption using agricultural wastes: environmental application review. J Purity Util React Environ. 2012;1:170–99.

    CAS  Google Scholar 

  23. Ma F, Qu R, Sun Ch, Wang Ch, Ji Ch, Zhang Y, Yin P. Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. J Hazard Mater. 2009;172:792–801.

    Article  CAS  Google Scholar 

  24. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524–36.

    Article  CAS  Google Scholar 

  25. Budnyak TM, Tertykh VA, Yanovska ES. Chitosan immobilized on saponite surface in extraction of V(V), Mo(VI) and Cr(VI) oxoanions. Chem Phys Tech Surf. 2014;5:445–53.

    CAS  Google Scholar 

  26. Ganji F, Abdekhodaie MJ. Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym. 2008;74:435–41.

    Article  CAS  Google Scholar 

  27. Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T. In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym. 2013;93:731–9.

    Article  CAS  Google Scholar 

  28. Pab E, Retuert J, Quijada R, Zarate A. TiO2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method. Microporous Mesoporous Mater. 2004;67:195–203.

    Article  Google Scholar 

  29. Puchol V, Haskouri J, Latorre J, Guillem C, Beltrán A, Beltrán D, Amorós P. Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Chem Commun. 2009;19:2694-6.

    Article  Google Scholar 

  30. Budnyak TM, Tertykh VA, Yanovska ES, Kołodyńska D, Bartyzel A. Adsorption of V(V), Mo(VI) and Cr(VI) oxoanions by chitosan–silica composite synthesized by Mannich reaction. Adsorpt Sci Technol. 2015;33:6–8.

    Article  Google Scholar 

  31. Spirk S, Findenig G, Doliska A, Reichel V, Swanson N, Kargl R, Ribitsch V, Stana-Kleinschek K. Chitosan–silane sol–gel hybrid thin films with controllable layer thickness and morphology. Carbohydr Polym. 2013;93:285–90.

    Article  CAS  Google Scholar 

  32. Li F, Jiang H, Zhang S. An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution. Talanta. 2007;71:1487–93.

    Article  CAS  Google Scholar 

  33. Fei B, Lu H, Xin JH. One-step preparation of organosilica–chitosan crosslinked nanospheres. Polymer. 2006;47:947–50.

    Article  CAS  Google Scholar 

  34. Tamaki R, Chujo Y. Synthesis of chitosan/silica gel polymer hybrids. Compos Interfaces. 1998;6:259–72.

    Google Scholar 

  35. Ehrlich H, Simon P, Motylenko M, Wysokowski M, Bazhenov VV, Galli R, Stelling AL, Stawski D, Ilan M, Stocker H, Abendroth B, Born R, Jesionowski T, Kurzydłowski KJ, Meyer DC. Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B. 2013;1:5092–9.

    Article  CAS  Google Scholar 

  36. Wysokowski M, Motylenko M, Bazhenov VV, Stawski D, Petrenko I, Ehrlich A, Behm T, Kljajic Z, Stelling AL, Jesionowski T, Ehrlich H. Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci. 2013;7:248–60.

    Article  Google Scholar 

  37. Wysokowski M, Behm T, Born R, Bazhenov VV, Meißner H, Richter G, Szwarc-Rzepka K, Makarova A, Vyalikh D, Schupp P, Jesionowski T, Ehrlich H. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng. 2013;33:3935–41.

    Article  CAS  Google Scholar 

  38. Zou H, Wu S, Shen J. Polymer/silica nanocomposites, preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–957.

    Article  CAS  Google Scholar 

  39. Xu X, Dong P, Feng Y, Li F, Yu H. A simple strategy for preparation of spherical silica-supported porous chitosan matrix based on sol–gel reaction and simple treatment with ammonia solution. Anal Methods. 2010;2:546–51.

    Article  CAS  Google Scholar 

  40. Silva SS, Ferreira RAS, Fu L, Carlos LD, Mano JF, Reis RL, Rocha J. Functional nanostructured chitosan–siloxane hybrids. J Mater Chem. 2005;15:3952–61.

    Article  CAS  Google Scholar 

  41. Coradin T, Allouche J, Boissiere M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr Nanosci. 2006;2:219–30.

    Article  CAS  Google Scholar 

  42. Lai SM, Yang Arthur JM, Chen WC, Hsiao JF. The properties and preparation of chitosan/silica hybrids using sol–gel process. Pol-Plast Tech Eng. 2006;45:997–1003.

    Article  CAS  Google Scholar 

  43. Soltani RDC, Khataee AR, Safari M, Joo SW. Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeter Biodegr. 2013;85:383–91.

    Article  Google Scholar 

  44. Roosen J, Spooren J, Binnemans K. Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. J Mater Chem A. 2014;2:19415–26.

    Article  CAS  Google Scholar 

  45. Grini G. Recent development in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 2005;30:38–70.

    Article  Google Scholar 

  46. Patel S, Bandyopadhyay A, Vijayabaskar V, Bhowmick AK. Effect of microstructure of acrylic copolymer/terpolymer on the properties of silica based nanocomposites prepared by sol–gel technique. Polymer. 2005;46:8079–90.

    Article  CAS  Google Scholar 

  47. Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 2004;55:77–93.

    Article  CAS  Google Scholar 

  48. Nagib S, Inoue K, Yamaguchi T, Tamaru T. Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy. 1999;51:73–85.

    Article  CAS  Google Scholar 

  49. Inoue K, Ohto K, Yoshizuka K, Yamaguchi T, Tanaka T. Adsorption of lead(II) ion on complexation types of chemically modified chitosan. Bull Chem Soc Jpn. 1997;70:2443–7.

    Article  CAS  Google Scholar 

  50. Budnyak TM, Yanovska ES, Ischenko MV, Tertykh VA. Adsorption of heavy metals by chitosan crosslinked with glutaraldehyde. Visnyk KNU Khim. 2014;1(50):35–8 (in Ukrainian).

    Google Scholar 

  51. Budnyak T, Tertykh V, Yanovska E. Chitosan immobilized on the silica surface for the wastewater treatment. Mater Sci (Medžiagotyra). 2014;20:177–82.

    Google Scholar 

  52. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D. Synthesis and adsorption properties of chitosan–silica nanocomposite prepared by sol–gel method. Nanoscale Res Lett. 2015. doi:10.1186/s11671-014-0722-1.

    Google Scholar 

  53. Korostylev PP. Solution preparation for chemical–analytical application. Moscow: Science; 1964 (in Russian).

    Google Scholar 

  54. Marchenko Z, Balcerzak M. Spectrofotometry metods in inorganic analisys. Warsaw: Naukove, Naukowe PWN; 1998 (in Polish).

    Google Scholar 

  55. Holleman W. Lehrbuchde Anorganischen Chemie. Berlin: Walter de Gruyter; 1995 (in German).

    Google Scholar 

  56. López FA, Merc A, Alguacil FJ. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.

    Article  Google Scholar 

  57. Poly C, Sato H, Aoi K, Takasu A, Okada M. Characterization of chitin-based polymer hybrids by temperature-programmed analytical pyrolysis techniques. Macromolecules. 2000;2:357–62.

    Google Scholar 

  58. Zawadzki J, Kaczmarek H. Thermal treatment of chitosan in various conditions. Carbohydr Polym. 2010;80:395–401.

    Article  Google Scholar 

  59. Stuani F, Deuber P, Agostini S, Eloizo A, Eduardo J. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2013;114:321–7.

    Article  Google Scholar 

  60. Dorota MZ, Halina C, Kaczmarekke A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J Therm Anal Calorim. 2016;124:87–100.

    Article  Google Scholar 

  61. Ziegler-Borowska M, Chełminiak D, Kaczmarek H. Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt. J Therm Anal Calorim. 2014;119(1):499–506.

    Article  Google Scholar 

  62. Rojek B, Wesolowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J Therm Anal Calorim. 2016;1–11. doi:10.1007/s10973-016-5441-7.

  63. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113(1):169–77.

    Article  CAS  Google Scholar 

  64. Bolbukh Yu, Kuzema P, Tertykh V, Laguta I. Thermal degradation of polyethylene containing antioxidant and hydrophilic/hydrophobic silica. J Therm Anal Calorim. 2008;94(3):727–36.

    Article  CAS  Google Scholar 

  65. Bolbukh YN, Tertykh VA, Gawdzik B. TG and DSC studies of filled porous copolymers. J Therm Anal Calorim. 2006;86(1):125–32.

    Article  CAS  Google Scholar 

  66. Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP. Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett. 2016;11(1):168.

    Article  Google Scholar 

  67. Budnyak TM, Strizhak AV, Gładysz-Płaska A, Sternik D, Komarov IV, Kołodyńska D, Majdan M, Tertykh VA. Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater. 2016;314:326–340.

    Article  CAS  Google Scholar 

  68. Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc. 1916;38:2221–95.

    Article  CAS  Google Scholar 

  69. Freundlich B. Concerning adsorption in solutions. Z Phys Chem. 1906;57:385–470.

    CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results was financed from the Visegrad 4 Eastern Partnership Program of the International Visegrad Fund under the contract for financing Visegrad/V4EaP Scholarship No. 51400001 and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA Grant Agreement No. PIRSES-GA-2013-612484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Budnyak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budnyak, T.M., Yanovska, E.S., Kołodyńska, D. et al. Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim 125, 1335–1351 (2016). https://doi.org/10.1007/s10973-016-5581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5581-9

Keywords

Navigation