Skip to main content
Log in

Gel-Combustion Synthesis of Nanocrystalline Cerium Oxide and Its Powder Characteristics

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nanocrystalline ceria powders were prepared by using citrate gel combustion. The influence of the composition of the combustion mixture on the characteristics of the final product was investigated. Ceria powders obtained by calcining the combustion residue in air at 1073 K were characterized for their specific surface area (SSA), X-ray crystallite size (XCS), bulk density (BD), particle size distribution (PSD) and residual carbon. The dependence of these properties on the fuel to oxidant ratio (R) of the initial mixture was investigated. The microstructure of the calcined ceria powders prepared from a mixture with R = 0.25 was investigated by using high resolution transmission electron microscopy. All the calcined powders were pelletised and sintered at 1473, 1673 and 1873 K, and their sinterability was compared by measuring the density of the sintered pellets. A maximum sintered density of 98 % theoretical density could be achieved at a temperature as low as 1473 K for the first time for the powder prepared from a mixture with R = 0.75. The systematic dependence of the properties of these powders on the composition of the initial mixture is being reported for the first time. Powders obtained from a mixture with an R value 0.25 showed a linear increase in sintered densities with the sintering temperature. Other powders exhibited anomalous decrease in the sintered density at high temperature, probably due to irregular grain growth coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patil K C, Hegde M S, Rattan T and Aruna S T, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific, Singapore (2008).

    Book  Google Scholar 

  2. Tsipis E V and Kharton V V, J Solid State Electrochem 12 (2008) 1039.

    Article  Google Scholar 

  3. Fu Q X, Zha S W, Zhang W, Peng D K, Meng G Y and Zhu B, J Power Sources 104 (2002) 73.

    Article  Google Scholar 

  4. Zhu W Z, and Deevi S C, Mater Sci & Eng A 362 (2003) 228.

    Article  Google Scholar 

  5. Kiork R E and Othmer D F, Encylopedia of Chemistry and Technology, 3rd ed., Wiley, New York, (1979).

    Google Scholar 

  6. Dorr W, Hellmann S, and Mages G, J Nucl Mater 140 (1986) 7.

    Article  Google Scholar 

  7. Jain A, Ananthasivan K, Anthonysamy S, and Rao PRV, J Nucl Mater 345 (2005) 245.

    Article  Google Scholar 

  8. Alifanti M, Baps B, and Blangenois N, Chem Mater 15 (2003) 395.

    Article  Google Scholar 

  9. Zhou Y C, and Rahman M N, J Mater Res 8 (1993) 1680.

    Article  Google Scholar 

  10. Li Y X, Chen W F, and Zhou X Z, Mater Lett 59 (2005) 48.

    Article  Google Scholar 

  11. Yin L X, Wang Y Q, and Pang G S, J Colloid Interface Sci 246 (2002) 78.

    Article  Google Scholar 

  12. Djuricic B, and Pickering S, J Eur Ceram Soc 19 (1999) 1925.

    Article  Google Scholar 

  13. Xu H, Yan H, and Chen Z, J Power Sources 163 (2006) 409.

    Article  Google Scholar 

  14. Palneedi H, Mangam V, Das S, and Das K, J Alloys Compd 509 (2011) 9912.

    Article  Google Scholar 

  15. Hwang C-C, Huang T-H, Tsai J-S, Lin C-S, and Peng C-H, Mater Sci Eng B 132 (2006) 229.

    Article  Google Scholar 

  16. Purohit R D, Sharma B P, Pillai K T, and Tyagi A K, Mater Res Bull 36 (2001) 2711.

    Article  Google Scholar 

  17. Chen W, Li F, Yu J, and Li Y, J Rare Earths 24 (2006) 434.

    Article  Google Scholar 

  18. Gu L, and Meng G, Mater Res Bull 42 (2007) 1323.

    Article  Google Scholar 

  19. Chandramouli V, Anthonysamy S, and Rao PRV, J Nucl Mater 265 (1999) 255.

    Article  Google Scholar 

  20. Anthonysamy S, Ananthasivan K, Chandramouli V, Kaliappan I, and Rao P R V, J Nucl Mater 278 (2000) 346.

    Article  Google Scholar 

  21. Ananthasivan K, Anthonysamy S, Sudha C, Terrance A L E, and Rao P R V, J Nucl Mater 300 (2002) 217.

    Article  Google Scholar 

  22. Biswas M, Prabhakaran K, Gokhale N M, and Sharma S C, Mater Res Bull 42 (2007).

    Article  Google Scholar 

  23. Fu Y-P, and Lin C-H, J Alloys Compd 389 (2005) 165.

    Article  Google Scholar 

  24. Xu H M, Yan H G, and Chen Z H, Mater Character 59 (2008) 301.

    Article  Google Scholar 

  25. Banerjee S, and Devi P S, J Nanopart Res 9 (2007) 1097.

    Article  Google Scholar 

  26. Jain S R, Adiga K C, and Pai Vernekar V R, Combust Flame 40 (1981) 71.

    Article  Google Scholar 

  27. Yuan Q, Duan H-H, Li L-L, Sun L-D, Zhang Y-W, and Yan C-H, Mater Character 335 (2009) 151.

    Google Scholar 

  28. Biswas M, and Bandyopadhyay S, Mater Res Bull 47 (2012) 544.

    Article  Google Scholar 

  29. Biswas M, and Bandyopadhyay S, Adv Powder Technol 25 (2014) 536.

    Article  Google Scholar 

  30. Biswas M, and Bandyopadhyay S, Ceram Int 39 (2013) 9699.

    Article  Google Scholar 

  31. Purohit R D, Saha S, and Tyagi A K, Ceram Int 32 (2006) 143.

    Article  Google Scholar 

  32. Chinarro E, Juradon J R, and Colomer M T, J Eur Ceram Soc 27 (2007) 3619.

    Article  Google Scholar 

  33. Wang X-H, Chen P-L, and Chen I-W, J Am Ceram Soc 89 (2006) 431.

    Article  Google Scholar 

  34. Deng X-Y, Bai H-L, Zhou H, and Chen I-W, J Am Ceram Soc 89 (2006) 438.

    Article  Google Scholar 

  35. Li J-G, Ikegami T, Wang Y, and Mori T, J Am Ceram Soc 85 (2002) 2376.

    Article  Google Scholar 

  36. Dragoo AL, and Domingues L P, J Am Ceram Soc 65 (1982) 253.

    Article  Google Scholar 

  37. Overs A, and Riess I, J Am Ceram Soc 65 (1982) 606.

    Article  Google Scholar 

  38. Higashi K, Sonoda K, Ono H, Sameshima S, and Hirata Y, J Mater Res 14 (1999) 957.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. G. Panneerselvam for helping to record the X-ray diffraction pattern. The authors would also like to acknowledge Dr. Amirthapandian of Materials Science Group, IGCAR for recording TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, S., Sanjay Kumar, D. & Ananthasivan, K. Gel-Combustion Synthesis of Nanocrystalline Cerium Oxide and Its Powder Characteristics. Trans Indian Inst Met 68 (Suppl 2), 243–252 (2015). https://doi.org/10.1007/s12666-015-0578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0578-9

Keywords

Navigation