Skip to main content
Log in

Review of heat transport properties of solar heat transfer fluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present article reviews the test techniques for some of the important heat transport properties of oils such as viscosity, density, specific heat capacity and thermal conductivity mainly used for characterization of heat transfer fluids. It can be seen that while density of oils can be tested at higher temperatures, the other heat transport properties of oils like viscosity, specific heat capacity and thermal conductivity have a limitation of being tested at low temperatures below 100–150 °C. While quite a few number of researchers have reported evaluation of heat transfer properties like specific heat capacity and thermal conductivity of oils by different methods, there remains a huge scope of debate and discussions on the repeatability and reproducibility of such tests, especially in case of oils used in high-temperature applications. A lot of insight has been gathered with respect to testing of thermal conductivity of oils, and several common test methods have been compared with each other. Lastly, two mathematical models, reported in the literature in open domain, have been reviewed and compared with each other. If the oils are to be used at elevated temperatures, like heat transfer fluids used in concentrated solar power generation where temperatures go as high as 400 °C and beyond, there is an urgent need to standardize a laboratory test method for performance evaluation of heat transport properties, which can help in formulating new generation oils based on novel chemistries and technologies like nanofluids, synthetic oils of novel chemistries, molten salts and molten metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Srivastva U, Malhotra RK, Kaushik SC. Recent developments in heat transfer fluids used for solar thermal energy applications. J Fundam Renew Energy Appl. 2015;. doi:10.4172/20904541.1000189.

    Google Scholar 

  2. Morris FH, Whitman Walter G. Heat transfer for oil and water in pipes. Ind Eng Chem Process Des Dev. 1928;20–3:234–40.

    Google Scholar 

  3. ASTM D 1298. Standard test method for density, relative density (specific gravity), or API, gravity of crude petroleum & liquid petroleum products by hydrometer method.

  4. ASTM D 70. Standard test method for density of semi-solid bituminous materials (Pycnometer method).

  5. ASTM D 4052-11. Standard test method for density and relative density of liquids by digital density meter.

  6. ASTM D 5002. Standard test method for density and relative density of crude oils by digital density analyzer.

  7. Furtado A, Batista E, Spohr I, Eduarda F. Proceeding of 14th International Congress of Metrology, Paris 22–25 June 2009.

  8. DobrzyckiJ. Automation in the sugar industry; WNT, Warszawa; 1991.

  9. Field Instruments for Process Automation. Siemens. Catalog FI-012006.

  10. ROTAMASS 3-Series, Coriolis mass flow meter, Yokogawa, Datasheet GS 1R4B4-E-H, 2nd Edn.

  11. Remiorz L, Ostrowski P. An instrument for the measurement of density of a liquid flowing in a pipeline. Flow Meas Instrum. 2015;41:18–27.

    Article  Google Scholar 

  12. Ostrowski P, Mędrych J, Wiśniewski Z. An instrument for the measurement of density of a liquid flowing in a pipeline. Silesian University of Technology. Patent No PL 182623.14.07.2001 WUP:02/02.

  13. ASTM D445-12. Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity).

  14. Jakubenas Peter P. Measuring flow of high viscosity liquids. Pipeline Gas J, July 2007. www.pgjonline.com.

  15. Prasad VSK, Balasubramaniam K, Kannan E, Geisinger KL. Viscosity measurements of melts at high temperatures using ultrasonic guided waves. J Mater Process Technol. 2008;207:315–20.

    Article  CAS  Google Scholar 

  16. ASTM E-1269. Standard test method for determining specific heat capacity by differential scanning calorimetry.

  17. ASTM D 2717. Standard test method for thermal conductivity of liquids.

  18. Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloid Surf A. 2009;352:136–40.

    Article  CAS  Google Scholar 

  19. Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube. Int Commun Heat Mass. 2012;39–1:152–9.

    Article  Google Scholar 

  20. Wang B, Wang X, Lou W, Hao J. Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity. Nanoscale Res Lett. 2011;6–1:259–69.

    Article  Google Scholar 

  21. Zeng Y-X, Zhong X-W, Liu Z-Q, Chen S, Li N. Preparation and enhancement of thermal conductivity of heat transfer oil-based MoS2 nanofluids. J Nanomater. 2013;. doi:10.1155/2013/270490.

    Google Scholar 

  22. Paul G, Chopkar M, Manna I, Das PK. Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sust Energ Rev. 2010;14–7:1913–24.

    Article  Google Scholar 

  23. Warzoha Ronald J, Fleischer Amy S. Determining the thermal conductivity of liquids using the transient hot disk method. Part I: establishing transient thermal-fluid constraints. Int J Heat Mass Transf. 2013;. doi:10.1016/j.ijheatmasstransfer.2013.10.064.

    Google Scholar 

  24. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13–4:474–80.

    Article  Google Scholar 

  25. Eithun CF. PhD Thesis on Development of a thermal conductivity apparatus: Analysis and design; Department of Energy and Process Engineering, Norwegian University of Science and Technology. 2012.

  26. Kostic M. Instrumentation with computerized data acquisition for an innovative thermal conductivity apparatus. http://www.kostic.niu.edu/ASEE97.PDF.

  27. Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Appl Energ. 2009;86–10:2244–8.

    Article  Google Scholar 

  28. Sengelin Bellet M, Thirriot C. Determination of thermophysical properties of non-newtonian liquids using a coaxial cylindrical cell. Int J Heat Mass Transf. 1975;18:1177.

    Article  Google Scholar 

  29. Powell RW. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J Sci Instrum. 1957;34:485–92.

    Article  Google Scholar 

  30. Horrocks JK, McLaughlin E. Non-steady state measurements of thermal conductivities of liquids polyphenyls. Proc R Soc Lond Ser B. 1963;273(A):259–74.

    Article  Google Scholar 

  31. Warzoha RJ, Fleischer AS. Determining the thermal conductivity of liquids using the transient hot disk method. Part I: establishing transient thermal-fluid constraints. Int. J Heat Mass Transf. 2013;. doi:10.1016/j.ijheatmasstransfer.2013.10.064.

    Google Scholar 

  32. Warzoha RJ, Fleischer AS. Determining the thermal conductivity of liquids using the transient hot disk method. Part II: establishing an accurate and repeatable experimental methodology; Int. J Heat Mass Transf. 2014;71:790–807.

    Article  Google Scholar 

  33. Zhu DS, Li XF, Wang N, Wang XJ, Gao JW, Li H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys. 2009;9–1:131–9.

    Article  Google Scholar 

  34. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci. 2009;48–6:1108–15.

    Article  Google Scholar 

  35. Czarnetzki W, Roetzel W. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys. 1995;16–2:413–22.

    Article  Google Scholar 

  36. Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 omega method. Int J Heat Fluid Flow. 2008;29–5:1456–61.

    Article  Google Scholar 

  37. Campbell RC. https://www.electronics-cooling.com/2002/05/flash-diffusivity-method-a-survey-of-capabilities.

  38. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys. 1961;1961(32–9):1679–84.

    Article  Google Scholar 

  39. Tada Y, Harada M, Tanigaki M, Eguch W. Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids. Rev Sci Instrum. 1978;49–9:1305–14.

    Article  Google Scholar 

  40. Trisaksria V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sust Energ Rev. 2007;11:512–23.

    Article  Google Scholar 

  41. Nguyen CT, Desgranges F, Galanis N, Roya G, Maréd T, Boucher S, Mintsa HA. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable. Int J Therm Sci. 2008;47:103–11.

    Article  CAS  Google Scholar 

  42. Alptekin E, Canakci M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energ. 2008;33:2623–30.

    Article  CAS  Google Scholar 

  43. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    Article  CAS  Google Scholar 

  44. Jaisankar S, Radhakrishnan TK, Sheeba KN. Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes. Sol Energy. 2009;83:1943–52.

    Article  Google Scholar 

  45. Sohal MS, Sabharwall P, Calderoni P, Wertsching AK, Grover BS, Sharpe P. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop. Idaho National Laboratory, Idaho Falls, Idaho 83415; 2010.

  46. Timofeeva EV, Moravek MR, Singh D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J Colloid Interf Sci. 2011;364:71–9.

    Article  CAS  Google Scholar 

  47. Mohammed HA, Bhaskarana G, Shuaib NH, Saidur R. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sust Energ Rev. 2011;15:1502–12.

    Article  CAS  Google Scholar 

  48. Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sust Energ Rev. 2011;15:3271–7.

    Article  CAS  Google Scholar 

  49. Lee SW, Park SD, Kang S, Bang IC, Kim JH. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–8.

    Article  CAS  Google Scholar 

  50. Tumuluri K, Alvarado JL, Taherian H, Marsh C. Thermal performance of a novel heat transfer fluid containing multi walled carbon nanotubes and microencapsulated phase change materials. Int J Heat Mass Transf. 2011;54:5554–67.

    Article  CAS  Google Scholar 

  51. Tiwari AK, Ghosh P, Sarkar J. Investigation of thermal conductivity and viscosity of nanofluids. J Environ Res Dev. 2012;7–2:767–77.

    Google Scholar 

  52. Esteban B, Riba J-R, Baquero G, Rius A, Puig R. Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenerg. 2012;4–2:164–71.

    Article  Google Scholar 

  53. Kumar P, Ganesan R. A CFD study of turbulent convective heat transfer Enhancement in circular pipeflow. Int J Civil Environ Eng. 2012;6:385–92.

    Google Scholar 

  54. Yang X, Yang X, Ding J, Shao Y, Fan H. Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower. Appl Energ. 2012;90:142–7.

    Article  CAS  Google Scholar 

  55. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids: a review. Renew Sust Energ Rev. 2013;21:548–61.

    Article  CAS  Google Scholar 

  56. Sundar LS, Sharma KV, Naik MT, Singh MK. Empirical and theoretical correlations on viscosity of nanofluids: a review. Renew Sust Energ Rev. 2013;25:670–86.

    Article  CAS  Google Scholar 

  57. Pacio J, Singer C, Wetzel T, Uhlig R. Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants. Appl Therm Eng. 2013;60:295–302.

    Article  Google Scholar 

  58. Li F-C, Yang J-C, Zhou W-W, He Y-R, Huang Y-M, Bao-Cheng Jiang. Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim Acta. 2013;556:47–53.

    Article  CAS  Google Scholar 

  59. Dudda B, Shin D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications. Int J Therm Sci. 2013;69:37–42.

    Article  CAS  Google Scholar 

  60. You C, Zhang W, Yin Z. Modeling of fluid flow and heat transfer in a trough solar collector. Appl Therm Eng. 2013;54:247–54.

    Article  Google Scholar 

  61. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  62. Rashin MN, Hemalatha J. Viscosity studies on novel copper oxide–coconut oil nanofluid. Exp Therm Fluid Sci. 2013;48:67–72.

    Article  Google Scholar 

  63. Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M, Palm B. Accurate basis of comparison for convective heat transfer in nanofluids. Int Commun Heat Mass. 2014;52:1–7.

    Article  CAS  Google Scholar 

  64. Marchã J, Osório T, Pereira MC, Horta P. Development and test results of a calorimetric technique for solar thermal testing loops, enabling mass flow and Cp measurements independent from fluid properties of the HTF used. Energ Proc. 2014;49:2125–34.

    Article  Google Scholar 

  65. Biencinto M, González L, Zarza E, Díez LE, Muñoz-Antón J. Performance model and annual yield comparison of parabolic-trough solar thermal power plants with either nitrogen or synthetic oil as heat transfer fluid. Energ Convers Manage. 2014;87:238–49.

    Article  CAS  Google Scholar 

  66. Mobin Arab, Ali Abbas. A model-based approach for analysis of working fluids in heat pipes. Appl Therm Eng. 2014;73:751–63.

    Article  Google Scholar 

  67. Muñoz-Anton J, Biencinto M, Zarza E, Díez LE. Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid. Appl Energ. 2014;135:373–81.

    Article  Google Scholar 

  68. Nikkam N, Haghighi EB, Saleemi M, Behi M, Khodabandeh R, Muhammed M, Palm B, Toprak MS. Experimental study on preparation and base liquid effect on thermo-physical and heat transport characteristics of α-SiC nanofluids. Int Commun Heat Mass. 2014;55:38–44.

    Article  CAS  Google Scholar 

  69. Alawi OA, Sidik NAC. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. Int Commun Heat Mass. 2014;58:125–31.

    Article  CAS  Google Scholar 

  70. Selvakumar P, Somasundaram P, Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energ Convers Manage. 2014;85:505–10.

    Article  CAS  Google Scholar 

  71. Suganthi KS, Vinodhan VL, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energ. 2014;135:548–59.

    Article  CAS  Google Scholar 

  72. Sundar LS, Ramana EV, Singh MK, Sousa Antonio CM. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass. 2014;56:86–95.

    Article  Google Scholar 

  73. Harris A, Kazachenko S, Bateman R. Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS). J Therm Anal Calorim. 2014;116:1309–14.

    Article  CAS  Google Scholar 

  74. Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG. Experiments on mixed convection heat transfer and performance evaluation of MWCNT–Oil nanofluid flow in horizontal and vertical microfin tubes. Exp Therm Fluid Sci. 2015;61:241–8.

    Article  CAS  Google Scholar 

  75. Hemmat Esfe M, Naderi A, Akbari M. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    Article  CAS  Google Scholar 

  76. Raei B, Shahraki F, Jamialahmadi M. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    Article  CAS  Google Scholar 

  77. Hosseinzadeh M, Heris SZ, Beheshti A. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124:827–38.

    Article  CAS  Google Scholar 

  78. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  79. Hemmat Esfe M, Rostamian H, Toghraie D. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126:643–8.

    Article  CAS  Google Scholar 

  80. Bland WF, Davidson RL. Physical properties of hydrocarbons. In: Brunjes AS, editor. Petroleum Processing Handbook. Newyork: Mcgraw-Hill Inc; 1967.

    Google Scholar 

  81. Solutia Europe S.A./N.V. Therminol VP-1—heat transfer fluid. http://www.solutia.com, Product information.

Download references

Acknowledgements

The author would like to acknowledge with thanks the management of Indian Oil Corporation Limited, Research and Development Centre, Faridabad, India, and also authorities at Indian Institute of Technology, Delhi, India, for their kind permission to carry out the above study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umish Srivastva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastva, U., Malhotra, R.K. & Kaushik, S.C. Review of heat transport properties of solar heat transfer fluids. J Therm Anal Calorim 130, 605–621 (2017). https://doi.org/10.1007/s10973-017-6441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6441-y

Keywords

Navigation