Skip to main content
Log in

Experimental investigation of convective heat transfer properties of synthetic fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer fluids are important component in transferring heat through heat exchangers in variety of industrial applications including solar energy. Measurement of convective heat transfer coefficients in experimental setup simulating as much actual operating conditions as possible is one reliable method. Experimenting with fully synthetic heat transfer oil meant for use in concentrated solar power plants, the paper presents experimental data for the oil run in a closed-loop indoor test setup up to high temperatures of 200 °C and at two flow rates of 900 and 1200 kg h−1. Convective heat transfer coefficients were calculated based on actual steady-state heat transfer taking place between the hot oil and cold water flowing in a counterflow shell and tube heat exchanger. It was observed that the convective heat transfer coefficient is higher at lower oil flow rate and there is more variation in the experimental values at lower flow rates of oil. On the contrary, the coefficients of convective heat transfer on the basis of empirical correlations at same two oil flow rates were calculated to be higher at higher oil flow rate with the variation uniformly patterned. With respect to calculations based on empirical correlations and experimentally observed values, a comparison of convective heat transfer coefficient “hi” for oil at the two flow rates, the empirically calculated heat transfer coefficients show an increasing trend with a definite gradient, while the experimental values show variable trend which is increasing initially with temperature, then drops slightly and then again starts to increase. In view of the fact that the empirical correlations do not take into account the nature and chemistry of the oil, it has been concluded that the experimental determination of heat transfer coefficient is reliable and feasible, though it may not necessarily correlate with the theoretically derived values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Srivastva U, Malhotra RK, Kaushik SC. Recent developments in heat transfer fluids used for solar thermal energy applications. J Fundam Renew Energy Appl. 2015. https://doi.org/10.4172/20904541.1000189.

    Google Scholar 

  2. Srivastva U, Malhotra RK, Kaushik SC. Advancements in heat transfer fluids for concentrated solar power plants. In: Petrotech 2016, New Delhi; 2016.

  3. Srivastva U, Malhotra RK, Kaushik SC. Comparative review of thermal conductivity measurements techniques of heat transfer oils. In: International symposium on fuels and lubricants, Indian Society of Fuels and Lubricants, New Delhi; 2016.

  4. Srivastva U, Malhotra RK, Kaushik SC. Review of heat transport properties of solar heat transfer fluids. J Therm Anal Calorim. 2017;130–132:605–21.

    Article  Google Scholar 

  5. Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Phys. 1961;32–9:1679–84.

    Article  Google Scholar 

  6. Hoffman HW, Cohen SJ. Fused salt heat transfer, Part III: forced convection heat transfer in circular tubes containing NaNO2–KNO3–NaNO3 eutectic. Report No. ORNL-2433; 1960.

  7. Yu-ting Wu, Bin Liu, Chong-fang Ma, Hang Guo. Convective heat transfer in the laminar–turbulent transition region with molten salt in a circular tube. Exp Therm. Fluid Sci. 2009;33:1128–32.

    Article  Google Scholar 

  8. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    Article  CAS  Google Scholar 

  9. Sohal MS, Sabharwall P, Calderoni P, Wertsching AK, Grover BS, Sharpe P. Conceptual design of forced convection molten salt heat transfer testing loop. Idaho Falls: Idaho National Laboratory; 2010.

    Book  Google Scholar 

  10. Mohammed HA, Bhaskarana G, Shuaib NH, Saidur R. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Energy Rev. 2011;15:1502–12.

    Article  CAS  Google Scholar 

  11. Sarkar Jahar. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev. 2011;15:3271–7.

    Article  CAS  Google Scholar 

  12. Tumuluri K, Alvarado JL, Taherian H, Marsh C. Thermal performance of a novel heat transfer fluid containing multi walled carbon nanotubes and microencapsulated phase change materials. Int J Heat Mass Transf. 2011;54:5554–67.

    Article  CAS  Google Scholar 

  13. You C, Zhang W, Yin Z. Modeling of fluid flow and heat transfer in a trough solar collector. Appl Therm Eng. 2013;54:247–54.

    Article  Google Scholar 

  14. Lopez-Gonzalez D, Valverde JL, Sanchez P, Sanchez-Silva L. Characterization of different heat transfer fluids and degradation study by using a pilot plant device operating at real conditions. Energy. 2013;54:240–50.

    Article  CAS  Google Scholar 

  15. Lu J, He S, Liang J, Ding J, Yang J. Convective heat transfer in the laminar–turbulent transition region of molten salt in annular passage. Exp Therm Fluid Sci. 2013;51:71–6.

    Article  CAS  Google Scholar 

  16. Chen C, Wu Y-T, Wang S-T, Ma C-F. Experimental investigation on enhanced heat transfer in transversally corrugated tube with molten salt. Exp Therm Fluid Sci. 2013;47:108–16.

    Article  Google Scholar 

  17. Lu J, Sheng X, Ding J, Yang J. Transition and turbulent convective heat transfer of molten salt in spirally grooved tube. Exp Therm Fluid Sci. 2013;47:180–5.

    Article  Google Scholar 

  18. Rahmati AR, Roknabadi AR, Abbaszadeh M. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014;45:361–90.

    Article  Google Scholar 

  19. Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M, Palm B. Accurate basis of comparison for convective heat transfer in nanofluids. Int Commun Heat Mass Transf. 2014;52:1–7.

    Article  CAS  Google Scholar 

  20. Biencinto M, González L, Zarza E, Díez LE, Javier M-A. Performance model and annual yield comparison of parabolic-trough solar thermal power plants with either nitrogen or synthetic oil as heat transfer fluid. Energy Convers Manag. 2014;87:238–49.

    Article  CAS  Google Scholar 

  21. Muñoz-Anton J, Biencinto M, Zarza E, Díez LE. Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid. Appl Energy. 2014;135:373–81.

    Article  Google Scholar 

  22. Nikkam N, Haghighi EB, Saleemi M, Behi M, Khodabandeh R, Muhammed M, Palm B, Toprak MS. Experimental study on preparation and base liquid effect on thermo-physical and heat transport characteristics of α-SiC nanofluids. Int Commun Heat Mass Transf. 2014;55:38–44.

    Article  CAS  Google Scholar 

  23. Selvakumar P, Somasundaram P, Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Convers Manag. 2014;85:505–10.

    Article  CAS  Google Scholar 

  24. Suganthi KS, Vinodhan VL, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy. 2014;135:548–59.

    Article  CAS  Google Scholar 

  25. Harris A, Kazachenko S, Bateman R. Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS). J Therm Anal Calorim. 2014;116:1309–14.

    Article  CAS  Google Scholar 

  26. Derakhshan MM, Akhavan-Behabadi MA, Mohseni SG. Experiments on mixed convection heat transfer and performance evaluation of MWCNT–oil nanofluid flow in horizontal and vertical microfin tubes. Exp Therm Fluid Sci. 2015;61:241–8.

    Article  CAS  Google Scholar 

  27. Esfe MH, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    Article  Google Scholar 

  28. Bahiraei M, Hangi M, Saeedan M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy. 2015;93:2229–40.

    Article  CAS  Google Scholar 

  29. Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052–68.

    Article  Google Scholar 

  30. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  Google Scholar 

  31. Saeedan M, Bahiraei M. Effects of geometrical parameters on hydrothermal characteristics of shell-and-tube heat exchanger with helical baffles: numerical investigation, modeling and optimization. Chem Eng Res Des. 2015;96:43–53.

    Article  CAS  Google Scholar 

  32. Raei B, Shahraki F, Jamialahmadi M, Petyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    Article  CAS  Google Scholar 

  33. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124:827–38.

    Article  CAS  Google Scholar 

  34. Bahiraei M. Particle migration in nanofluids: a critical review. Int J Therm Sci. 2016;109:90–113.

    Article  CAS  Google Scholar 

  35. Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Daharih M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transfer. 2016;76:16–23.

    Article  CAS  Google Scholar 

  36. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol-water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

  37. Baratpoura M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transfer. 2016;74:108–13.

    Article  Google Scholar 

  38. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  39. Dardan E, Afrand M, Isfahani AHM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;25A:524–34.

    Article  Google Scholar 

  40. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  41. Esfe MH, Afrand M, Yan W-M, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Article  Google Scholar 

  42. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  43. Esfe MH, Yan W-M, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)-ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  Google Scholar 

  44. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  45. Esfe MH, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.

    Article  Google Scholar 

  46. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO Nanofluid in a sinusoidal channel with a porous medium. Physica E. 2017;87:134–40.

    Article  CAS  Google Scholar 

  47. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Physica E. 2017;85:103–8.

    Article  CAS  Google Scholar 

  48. Akbaria OA, Toghraie D, Karimipour A, Marzband A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    Article  Google Scholar 

  49. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  Google Scholar 

  50. Esfe MH, Rostamian H, Toghraie D, Yan W-M. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2017;126:643–8.

    Article  Google Scholar 

  51. Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82:154–60.

    Article  Google Scholar 

  52. Dehkordi RA, Esfe MH, Afrand M. Effect of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity. Appl Therm Eng. 2017;120:358–66.

    Article  Google Scholar 

  53. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  54. Bahiraei M, Naghibzadeh SM, Jamshidmofid M. Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles. Energy Convers Manag. 2017;144:224–34.

    Article  CAS  Google Scholar 

  55. Bahiraei M, Khosravi R, Heshmatian S. Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl Therm Eng. 2017;123:266–76.

    Article  Google Scholar 

  56. Foster R, Ghassemi M, Cota A. Solar energy: renewable energy and the environment. New York: CRC Press; 2009. ISBN 978-1-4200-7566-3.

    Book  Google Scholar 

  57. Thomas LC. Heat transfer. Englewood Cliffs: Prentice Hall; 1991. ISBN 0-13-384942-2.

    Google Scholar 

  58. Mcdonald AG, Maganda HL. Thermo-fluids system design. West Sussex: Wiley; 2012. ISBN 978-1-118313633.

    Book  Google Scholar 

  59. Solutia Europe S.A./N.V. Therminol VP-1—heat transfer fluid. http://www.solutia.com; Product information.

Download references

Acknowledgements

The author would like to acknowledge with thanks the management of Indian Oil Corporation Limited, Research and Development Centre, Faridabad, India, and also authorities at Indian Institute of Technology, Delhi, India, for their kind permission to carry out the above study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umish Srivastva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastva, U., Malhotra, R.K. & Kaushik, S.C. Experimental investigation of convective heat transfer properties of synthetic fluid. J Therm Anal Calorim 132, 709–724 (2018). https://doi.org/10.1007/s10973-018-6961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6961-0

Keywords

Navigation