Skip to main content
Log in

Thermal cycling testing of Zn–Mg–Al eutectic metal alloys as potential high-temperature phase change materials for latent heat storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents the thermal stability testing results of five high-temperature phase change materials for their potential use in latent thermal energy storage systems. The tested materials are eutectic metal alloys [Zn84Al8.7Mg7.3, Zn88.7Al11.3, Zn92.2Mg7.8, Zn72Mg28 and Mg70Zn24.9Al5.1 (at.%)] with phase change temperatures in the range of 340–380 °C. The five candidates have been selected not only for their adequate melting temperature and high fusion enthalpy, but also for the availability and appropriate costs [2–3 $/kg (Rodríguez-Aseguinolaza in J Therm Anal Calorim 117:93–99, 2014)] of Zn, Al, and Mg primary metals. As it is well known and demonstrated in previous works, the use of metal alloys presents noticeable benefits on the TES solutions based on their implementation. The particular advantages introduced by the Zn–Mg–Al system in terms of maximization of the storage capacity and appropriate operation temperature justify a deeper analysis of these alloys, previously studied, for a complete thermal performance. In this work, with the aim of reproducing a realistic thermal cycling behaviour in real heat storage applications, the selected candidates have been subjected to short- and long-term thermal cycling tests by 100 and 500 melting/solidification cycles, respectively. These experiments permitted to detect any potential evolution of the thermodynamic and structural properties of the investigated materials that could be sign of an undesirable chemical decomposition or phase segregation. As a conclusion, the Zn84Al8.7Mg7.3, Zn88.7Al11.3, Mg72Zn28 and Mg70Zn24.9Al5.1 alloys have been identified as very promising latent heat storage materials due to their long-term thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodríguez-Aseguinolaza J, Blanco-Rodríguez P, Risueño E, Tello MJ, Doppiu S. Thermodynamic study of the eutectic Mg49–Zn51 alloy used for thermal energy storage. J Therm Anal Calorim. 2014;117:93–9.

    Article  Google Scholar 

  2. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  3. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  4. Michels H, Pitz-Paal R. Cascade latent heat storage for parabolic trough solar power plants. Sol Energy. 2007;81:829–37.

    Article  CAS  Google Scholar 

  5. Seeniraj RV, Narasimhan NL. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy. 2008;82:535–42.

    Article  Google Scholar 

  6. Nomura T, Okinaka N, Akiyama T. Waste heat transportation system, using phase change materials (PCM) from steelworks to chemical plant. Resour Conserv Recycl. 2010;54:1000–6.

    Article  Google Scholar 

  7. Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev. 2010;14:955–70.

    Article  CAS  Google Scholar 

  8. Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature change thermal storage systems. Renew Sustain Energy Rev. 2012;16:2118–32.

    Article  CAS  Google Scholar 

  9. Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D. Thermal energy storage for direct steam generation. Sol Energy. 2011;85:627–33.

    Article  Google Scholar 

  10. Liu M, Belusko M, Steven Tay NH, Bruno F. Impact of the heat transfer fluid in a flat plate phase change thermal Storage unit for concentrated solar tower plants. Sol Energy. 2014;101:220–31.

    Article  CAS  Google Scholar 

  11. Cardenas B, León N. High temperature latent heat thermal energy storage: phase change materials, desing considerations and performance enhancement techniques. Renew Sustain Energy Rev. 2013;27:724–37.

    Article  CAS  Google Scholar 

  12. Khare S, Dell’Amico M, Knight C, McGarry S. Selection of materials from high temperature latent heat energy storage. Sol Energy Mater Sol C. 2012;107:20–7.

    Article  CAS  Google Scholar 

  13. Hoshi A, Mills DR, Bittar A, Saitoh TS. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol Energy. 2005;79:332–9.

    Article  CAS  Google Scholar 

  14. Rathod MK, Banerjee J. Thermal stability phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–58.

    Article  CAS  Google Scholar 

  15. Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol C. 2009;93:571–6.

    Article  CAS  Google Scholar 

  16. Sari A. Eutectic mixture of some fatty acids for latent heat storage: thermal properties and thermal reliability with respect to thermal cycling. Energy Convers Manag. 2006;47:1207–21.

    Article  CAS  Google Scholar 

  17. Sari A, Sarı H, Önal A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers Manag. 2004;45:365–76.

    Article  CAS  Google Scholar 

  18. El-Sebaii AA, Al-Amir S, Al-Marzouki FM, Faidah AS, Al-Ghamdi AA, Al-Heniti S. One thousand thermal cycles magnesium chloride hexahydrate as a promising PCM for indoor solar cooking. Energy Convers Manag. 2011;52:1771–7.

    Article  CAS  Google Scholar 

  19. Tyagi VV, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol Energy Mater Sol C. 2008;92:891–9.

    Article  CAS  Google Scholar 

  20. Sharma A, Sharma SD, Buddhi D. Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers Manag. 2002;43:1923–30.

    Article  CAS  Google Scholar 

  21. Sari A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications. Energy Convers Manag. 2003;44:2277–87.

    Article  CAS  Google Scholar 

  22. Shukla A, Buddhi D, Sawhney RL. Thermal cycling test of few selected inorganic and organic phase change materials. Renew Energy. 2008;33:2606–14.

    Article  CAS  Google Scholar 

  23. Sharma SD, Buddhi D, Sawhney RL. Accelerated thermal cycle test of latent heat-storage materials. Sol Energy. 1999;66:483–90.

    Article  CAS  Google Scholar 

  24. Genc ZK, Canbay CA, Acar SS, Sekerci M, Genc M. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88.

    Article  CAS  Google Scholar 

  25. Sharma RK, Ganesan P, Tyagi VV. Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim. 2016;124(3):1357–66.

    Article  CAS  Google Scholar 

  26. Fu X, Liu Z, Wu B, Wang J, Lei J. Preparation and thermal properties of stearic acid/diatomite composites as form-stable phase change materials for thermal energy storage via direct impregnation method. J Therm Anal Calorim. 2016;123(2):1173–81.

    Article  CAS  Google Scholar 

  27. Shin BC, Kim SD. Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium. Sol Energy Mater. 1990;21:81–90.

    Article  CAS  Google Scholar 

  28. Sun JQ, Zhang RY, Liu ZP, Lu GH. Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers Manag. 2007;48(2):619–24.

    Article  CAS  Google Scholar 

  29. Kuravi S, Trahan Yogi Goswami JD, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci. 2013;39:285–319.

    Article  Google Scholar 

  30. Alam TE, Dhau JS, Yogi Goswamib D, Stefanakos E. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Appl Energy. 2015;154:92–101.

    Article  CAS  Google Scholar 

  31. Liu M, Gomez JC, Turchi CS, Tay NHS, Saman W, Bruno F. Determination of thermo-physical properties and stability testing of high-temperature phase-change materials as CSP applications. Sol Energy Mater Sol C. 2015;139:81–7.

    Article  CAS  Google Scholar 

  32. Akdepniz MV, Wood JV. Microstructures and phase selection in rapidly solidified Zn–Mg alloys. J Mater Sci. 1996;31:545–50.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Industry, Innovation, Commerce and Tourism of the Basque Government for funding the ETORTEK CIC Energigune-2011 and ETORTEK CIC Energigune-2014 research programs. The authors would also like to thank Naira Soguero and Jon Ajuria for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Faik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risueño, E., Gil, A., Rodríguez-Aseguinolaza, J. et al. Thermal cycling testing of Zn–Mg–Al eutectic metal alloys as potential high-temperature phase change materials for latent heat storage. J Therm Anal Calorim 129, 885–894 (2017). https://doi.org/10.1007/s10973-017-6261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6261-0

Keywords

Navigation