Skip to main content
Log in

Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solidification behavior of AZ Magnesium alloys in various cooling conditions was investigated using a computer-aided cooling curve thermal analysis method. In each case, the cooling curve and its first and second derivative curves have been plotted using accurate thermal analysis equipment and solidification characteristics were recognized from these curves. The cooling rates used in the present study range from 0.22 to 8.13 °C s−1. The results of thermal analysis show that the solidification parameters of AZ alloys such as nucleation temperature (T N,α), nucleation undercooling (∆T N,α), recalescence undercooling (∆T R,α), range of solidification temperature (∆T S) and total solidification time (t f) are influenced by variation of cooling rate. Also, the effect of Al content on these parameters was studied. Microstructural evaluation was carried out to determine the correlation between the cooling rate and secondary dendrite arm spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bäckerud L, Chai G, Tamminen J. Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys. Stockholm: AFS/Skanaluminium; 1990.

    Google Scholar 

  2. Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry, vol. 5. 1st ed. Amsterdam: Elsevier; 2008.

    Google Scholar 

  3. Backerud L, Sigworth GK. Recent development in thermal analysis of aluminum casting alloys. AFS Trans. 1989;97:459–64.

    Google Scholar 

  4. Djurdjevic MB, Huber G, Odanovic Z. Synergy between thermal analysis and simulation. J Therm Anal Calorim. 2013;111:1365–73.

    Article  CAS  Google Scholar 

  5. Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81:235–42.

    Article  CAS  Google Scholar 

  6. Malekan M, Shabestari SG. Computer aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103:453–8.

    Article  Google Scholar 

  7. Mackay RI, Djurdjevic MB, Sokolowski JH. Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy. AFS Trans. 2000;108:521–30.

    CAS  Google Scholar 

  8. Gowri S, Samuel FH. Effect of cooling rate on the solidification behavior of Al-7 Pct Si–SiC p metal–matrix composites. Met Trans A. 1992;23:3369–76.

    Google Scholar 

  9. Shabestari SG, Malekan M. Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Metall Q. 2005;44:305–12.

    Article  CAS  Google Scholar 

  10. Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014;117:1253–61.

    Article  CAS  Google Scholar 

  11. Malekan M, Naghdali S, Abrishami S, Mirghaderi SH. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. J Therm Anal Calorim. 2016;124:601–9.

    Article  CAS  Google Scholar 

  12. Ghoncheh MH, Shabestari SG. Effect of cooling rate on the dendrite coherency point during solidification of Al2024 alloy. Metall Mater Trans A. 2015;46:1287–99.

    Article  CAS  Google Scholar 

  13. Shabestari SG, Ghoncheh MH. Investigation on the effect of cooling rate on hot tearing susceptibility of Al2024 alloy using thermal analysis. Metall Mater Trans B. 2015;46:2438–48.

    Article  CAS  Google Scholar 

  14. Hosseini VA, Shabestari SG. Study on the eutectic and post-eutectic reactions in LM13 aluminum alloy using cooling curve thermal analysis technique. J Therm Anal Calorim. 2016;124:611–7.

    Article  CAS  Google Scholar 

  15. Liang SM, Chen RS, Blandin JJ, Suery M, Han EH. Thermal analysis and solidification pathways of Mg–Al–Ca system alloys. Met Trans A. 2008;480:365–72.

    Google Scholar 

  16. Li J, Chen R, Ma Y, Ke W. Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim Acta. 2014;590:232–41.

    Article  CAS  Google Scholar 

  17. Farahany S, Bakhsheshi-Rad HR, Idris MH, Abdul Kadir MR, Lotfabadi AF, Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochim Acta. 2012;527:180–9.

    Article  CAS  Google Scholar 

  18. Flemings MC. Solidification processing. 1st ed. New York: McGraw-Hill; 1974.

    Google Scholar 

  19. Paliwal M, Jung I-H. The evolution of the growth morphology in Mg–Al alloys depending on the cooling rate during solidification. Acta Metall. 2013;61:4848–60.

    CAS  Google Scholar 

  20. Paliwal M, Kang DH, Essadiqi E, Jung I-H. The evolution of as-cast microstructure of ternary Mg–Al–Zn alloys. Metall Mater Trans A. 2014;45:3596–608.

    Article  CAS  Google Scholar 

  21. Flemings MC, Kattamis TZ, Bardes BP. Dendrite arm spacing in aluminum alloys. AFS Trans. 1991;99:501–6.

    CAS  Google Scholar 

  22. Masoumi M, Pekguleryuz M. Effect of cooling rate on the microstructure of AZ31 magnesium alloy. AFS Trans. 2009;117:617–26.

    CAS  Google Scholar 

  23. Caceres CH, Davidson CJ, Griffiths JR, Newton CL. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater Sci Eng A. 2002;35:344–55.

    Article  Google Scholar 

  24. Wang Y, Peng L, Ji Y, Cheng X, Wang N, Zhao Y, Fu Y, Chen LQ, Ding W. The effect of low cooling rates on dendrite morphology during directional solidification in Mg–Gd alloys: in situ X-ray radiographic observation. Mater Lett. 2016;163:218–21.

    Article  CAS  Google Scholar 

  25. Hosseini VA, Shabestari SG, Gholizadeh R. Study of the cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50:7–14.

    Article  CAS  Google Scholar 

  26. Massalski B, Murray JL, Bennett LH, Baker H. Binary alloy phase diagrams, vol. 1. 1st ed. Geauga County: ASM; 1986.

    Google Scholar 

  27. Dube D, Couture A, Carbonneau Y, Fiset M, Angers R, Tremblay R. Secondary dendrite arm spacings in magnesium alloy AZ 91 D: from plaster moulding to laser remelting. Int J Cast Met Res. 1998;11:139–44.

    Article  CAS  Google Scholar 

  28. Sequeira WP, Murray MT, Dunlop GL, StJohn DH (1997) Effect of section thickness and gate velocity on the microstructure and mechanical properties of high pressure die cast magnesium alloy AZ91D. In: Proceedings TMS symposium on automotive alloys, Warrendale PA, pp 169–183.

  29. Dahle AK, Lee YC, Nave MD, Schaffer PL, StJohn DH. Development of the as-cast microstructure in magnesium-aluminium alloys. J Light Met. 2001;1:61–72.

    Article  Google Scholar 

  30. Ohno M, Mirkovic D, Schmid-Fetzer R. Phase equilibria and solidification of Mg-rich Mg–Al–Zn alloys. Mater Sci Eng A. 2006;421:328–37.

    Article  Google Scholar 

  31. Zhang L, Cao ZY, Liu YB, Su GH, Cheng LR. Effect of Al content on the microstructures and mechanical properties of Mg–Al alloys. Mater Sci Eng A. 2009;508:129–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shabestari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, F., Shabestari, S.G. Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis. J Therm Anal Calorim 129, 655–662 (2017). https://doi.org/10.1007/s10973-017-6240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6240-5

Keywords

Navigation