Skip to main content

Advertisement

Log in

Assessment of the Microstructure, Solidification Characteristics and Mechanical Properties of AZ61 + xSr Magnesium Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of Sr addition on the solidification parameters of AZ61 alloy, such as liquidus and solidus temperatures, the nucleation under cooling temperature and dendrite coherency point (DCP), was investigated via the cooling curve thermal analysis method. The results revealed that by increasing the Sr content from 0 to 0.75 pct, the nucleation temperature increased about 8.2 °C and nucleation under cooling decreased about 3.5 °C. Also, it was found that increasing the Sr content suspended the dendrite coherency point and increased the solid fraction at this point. Mechanical properties of AZ61 alloy were characterized at room temperature through a compressive test. The results indicated the positive influence of Sr on compressive strength of the alloy. When the Sr content increased from 0 to 0.75 pct, the ultimate compressive stress increased from 186 to 280 MPa. This could be the result of a grain refining effect of Sr on AZ61 alloy and the formation of Al4Sr and Al3Mg13Sr intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. L. Esperance, P. Plamondon, M. Kunst, A. Fischersworring-Bunk: Intermetallics, 2010, vol. 18, pp. 1–7.

    Article  Google Scholar 

  2. J. Bai, Y. Sun, F. Xue, S. Xue, J. Qiang, T. Zhu: J. Alloys Compds., 2007, vol.437, pp. 247–253.

    Article  CAS  Google Scholar 

  3. X. Zeng, Y. Wang, W. Ding, A. A. Luo, A. K. Sachdev: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1333-1341.

    Article  CAS  Google Scholar 

  4. J. Du, J. Yang, M. Kuwabara, W. Li, J. Peng: J. Alloys Compds. 2009, vol. 470, pp. 228–232.

    Article  CAS  Google Scholar 

  5. F. Khomamizadeh, B. Nami, S. Khoshkhooei: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3489-3494.

    Article  CAS  Google Scholar 

  6. E. MohammadiMazraeshahi, B. Nami, S.M. Miresmaeili, S.M. Tabatabaei: Mater. Des., 2015, vol. 76, pp. 64–70.

    Article  CAS  Google Scholar 

  7. J. Kubásek, D. Vojtěch, M. Martínek: Mater. Charact. 2013, vol. 86, pp. 270-282.

    Article  Google Scholar 

  8. K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi: Mater. Sci. Eng. A, 2005, vol. 403, pp. 276–280.

    Article  Google Scholar 

  9. P. Zhao, Q. Wang, C. Zhai, Y. Zhu: Mater. Sci. Eng. A 2007, vol. 444, pp. 318–326.

    Article  Google Scholar 

  10. S.F. Liu, B. Li, X.H. Wang, W. Su, H. Han: J. Mater. Process. Technol. 2009, vol. 209, pp. 3999–4004.

    Article  CAS  Google Scholar 

  11. Y. Ming-bo, P. Fu-Sheng, C.H. Ren-Ju, T. Ai-Tao: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 52-58.

    Article  Google Scholar 

  12. M. Aljarraha, M.A. Parveza, J. Lib, E. Essadiqib, M. Medraj: Sci. Technol. Adv. Mater., 2007, vol. 8, pp. 237–248.

    Article  Google Scholar 

  13. R. Chenga, F. Pana, S. Jianga, C. Lia, B. Jianga, X.Jiang: Prog. Nat. Sci.: Mater. Int. 2013, vol. 23, pp. 7-12.

    Article  Google Scholar 

  14. F. Yavari, S.G. Shabestari: J. Thermal Anal. Calorim., 2017, vol. 129, pp. 655-662.

    Article  CAS  Google Scholar 

  15. L. Backerud, G. Chai and J. Tamminen, Solidification characteristics of aluminum alloys, Vol. 2: Foundry Alloys, Skanauminum, Stockholm-Sweden, 1990.

  16. M. H. Ghoncheh, S. G. Shabestari and M. H. Abbasi: J. Thermal Anal. Calorim. 2014, vol. 117, pp. 1253–1261.

    Article  CAS  Google Scholar 

  17. S.G. Shabestari, M. Malekan: J. Alloys Compd. 2010, vol. 492, pp.134–142.

    Article  CAS  Google Scholar 

  18. J. Li, R. Chen, Y. Ma, W. Ke: Thermochim. Acta 2014, vol. 590, pp. 232–241.

    Article  CAS  Google Scholar 

  19. O. Sedighi, S.G. Shabestari, F. Yavari: Thermochim. Acta 2018, vol. 667, pp. 165–172.

    Article  CAS  Google Scholar 

  20. M. Malekan and S. G. Shabestari: Metall. Mater. Trans. A 2009, vol. 40A, pp. 3196-3203.

    Article  CAS  Google Scholar 

  21. M. H. Ghoncheh, and S. G. Shabestari: Metall. Mater. Trans. A 2015, vol. 46A, pp. 1287-1299.

    Article  Google Scholar 

  22. L. Backerud, E. Krol and J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 1: Wrought Aluminum Alloys, Skan Aluminum, Sweden, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shabestari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, F., Shabestari, S.G. Assessment of the Microstructure, Solidification Characteristics and Mechanical Properties of AZ61 + xSr Magnesium Alloys. Metall Mater Trans B 51, 3089–3097 (2020). https://doi.org/10.1007/s11663-020-01971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01971-0

Navigation