Skip to main content
Log in

Dissolution kinetics of fluorapatite in the hydrochloric acid solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermochemical study of hydrochloric acid attack of synthetic fluorapatite was performed by a DRC. The calculated thermogenesis curves show one peak. The plot of the heat quantity as a function of the dissolved mass undergoes only one straight segment, and the thermogenesis curves present a single peak, suggesting the occurrence of a one-step dissolution process. The dissolution kinetics was examined according to the heterogeneous reaction models and showed that the dissolution is controlled by the product layer diffusion process with a reaction rate expressed by the following semiempirical equation; \(\left[ {1 + 2(1 - X) - 3(1 - X)^{{\frac{2}{3}}} } \right] = 3195 \times 10^{ - 2} C^{0.145} \left( {\frac{S}{L}} \right)^{ - 0.628} e^{{ - \frac{2600}{\text T}}} t\). The activation energy was determined as 21.6 ± 1.5 kJ mol−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chepelevetskii ML, Brutskus EB, Krasnov KS, Juzhnaja EV. Rate of minerals dissolution as a property of a multi-component salt’s systems. Russ J Inorg Chem. 1956;1(7):1512–22.

    CAS  Google Scholar 

  2. Slack AV, editor. Phosphoric acid. Fertilizer science and technology series, vol. 1–2. New York: Marcel Dekker; 1967. p. 1159.

    Google Scholar 

  3. Hoffmann EO, Cate WE, Demin ME, El-more KL. Rates of solution of calcium phosphates in phosphoric acid solutions. J Agric Food Chem. 1957;5(4):266–75.

    Article  Google Scholar 

  4. Becker P. Phosphates and phosphoric acid: raw materials technology and economics of the wet process. 2nd ed., Fertilizer science and technology seriesNew York: Marcel Dekker; 1989. p. 760.

    Google Scholar 

  5. Lawer JE, Mc Clintock WO, Snow RE. Beneficiation of phosphate rock. J Miner Sci Eng. 1978;10(4):278–94.

    Google Scholar 

  6. Janikowski M, Robinson N, Sheldrick WF. Insoluble phosphate losses in phosphoric acid manufacture by the wet process. Theory and experimental technique. Fertil Soc. 1964;81:3–51.

    Google Scholar 

  7. Elnashaie SS, Al-Fraris TF. Investigation of acidulation and coating of Saudi phosphate rocks. Ind Eng Chem Res. 1990;29:2389–401.

    Article  CAS  Google Scholar 

  8. Ashraf M, Zafarand ZI, Ansari TM. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy. 2005;80(4):286–92.

    Article  CAS  Google Scholar 

  9. Melikhov IV, Dorozhkin SV, Nikolaev AL, Kozlovskaya ED, Rudin VN. Dislocations and the rate of dissolution of solids. Russ J Phys Chem. 1990;64:1746–50.

    Google Scholar 

  10. Kanazawa T, Umegaki T. Heats of solutions in the systems of calcium phosphates-acid solutions. Nippon Kagaku Kaishi. 1972;2:335–8.

    Article  Google Scholar 

  11. Gioia F, Mura G, Viola A. Analysis, simulation, and optimization of the hemihydrate process for the production of phosphoric acid from calcareous phosphorites. Ind Eng Chem Process Des Dev. 1977;16:390–9.

    Article  Google Scholar 

  12. Grinevich AV, Kochetkova VV, Klassen PV. Study of apatite decomposition in the sulphuric phosphoric acid solutions by a radioactive indicators method. Russ J Appl Chem. 1983;54:1359–60.

    Google Scholar 

  13. Shakourzadeh K, Bloise R, Baratin F. Crystallization of calcium sulfate hemihydrate in reagent-grade phosphoric acid. Ind Miner Technol. 1984;9:443.

    Google Scholar 

  14. Sluis SV, Meszaros Y, Gerda M, Rosmalen V. The digestion of phosphate ore in phosphoric acid. Ind Eng Chem Res. 1987;26:2501–5.

    Article  Google Scholar 

  15. Dorozohkin SV. Dissolution kinetics of single fluorapatite crystals in phosphoric acid solution under the conditions of the wet-process. Phosphoric Acid Product Prakt J Chem. 1996;338:620–6.

    Article  Google Scholar 

  16. Sevim F, Saraç H, Yartasi A. Dissolution kinetics of phosphate ore in H2SO4 solutions. Ind Eng Chem Res. 2003;42:2052–7.

    Article  CAS  Google Scholar 

  17. Elmore K, Farr TD. Equilibrium in the system calcium oxide phosphorous pentoxyde-water. Ind Eng Chem. 1940;32:580–6.

    Article  CAS  Google Scholar 

  18. Bayramoglu M, Demircilolu N, Tekin T. Dissolution kinetics of Mazidagi phosphate rock in HNO3 solution. Int J Miner Process. 1992;36:259–71.

    Article  Google Scholar 

  19. Samir I. Abu-Eishah; Nizar M. Parametric study on the production of phosphoric acid by the dehydrate process. J Chem. Eng. 2001;81:231–50.

    Article  Google Scholar 

  20. Sengul H, Ozer AK, Gulaboglu MS. Benefication of Mardin-Mazidagi (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Int J Miner Process. 2006;30:113–25.

    Google Scholar 

  21. Yarstri A, Kocakerim M, Yapici S, Ozmetin C. Dissolution kinetics of phosphate ore in SO2-saturated water. Ind Eng Chem Res. 1994;33:2220–5.

    Article  Google Scholar 

  22. Ben Brahim F, Mgaidi M, El Maaoui M. Kinetic of leaching of Tunisian phosphate ore particles in dilute phosphoric acid solutions. Can J Chem Eng. 1999;77:136–42.

    Article  CAS  Google Scholar 

  23. Economou ED, Vaimakis TC, Papmichael EM. The kinetics of dissolution of the carbonate minerals phosphate ore using dilute acetic acid solutions, the case of pH range from 3.96 to 6.40. J Colloid Interface Sci. 2002;245(1):133–41.

    Article  CAS  Google Scholar 

  24. Abali Y, Colak S, Yarstri A. Dissolution kinetics of phosphate rock with Cl2 gas in water. Hydrometallurgy. 1997;46:13–25.

    Article  CAS  Google Scholar 

  25. Brahim K, Antar K, Khattech I, Jemal M. Etude thermodynamique et cinétique de l’attaque de la fluorapatite par l’acide phosphorique. Ann Chim Sci Mater. 2006;31(5):611–20.

    Article  CAS  Google Scholar 

  26. Brahim K, Khattech I, Dubès JP, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluarapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:43–50.

    Article  CAS  Google Scholar 

  27. Brahim K, Antar K, Khattech I, Jemal M. Effect of temperature on the attack of fluorapatite by a phosphoric acid solution. Sci Res Essay. 2008;3(1):35–9.

    Google Scholar 

  28. Zafar ZI, Ansari TM, Ashraf M. Effect of hydrochloric acid on leaching behavior of calcareous phosphorites. Iran J Chem Chem Eng. 2006;25(2):47–57.

    CAS  Google Scholar 

  29. Zafar ZI, Anwar MM, Pritchard DW. Innovations in beneficiation technology for low grade phosphate rocks. Nutr Cycl Agroecosyst. 1996;46:135–51.

    Article  CAS  Google Scholar 

  30. Malash GF, Khodair SM. Beneficiation of Abu Tartur phosphate rock by partial acidulation with formic acid. Alexandria Eng J. 2005;44:487–92.

    CAS  Google Scholar 

  31. Zafar ZI, Ashraf M. Selective leaching kinetics of calcareous phosphate rock in lactic acid. Chem Eng J. 2007;131:41–8.

    Article  CAS  Google Scholar 

  32. Gharabaghi M, Noaparast M, Irannajad M. Selective leaching kinetics of low-grade calcareous phosphate ore in acetic acid. Hydrometallurgy. 2009;95:341–5.

    Article  CAS  Google Scholar 

  33. El-Shall H, Abdel-Aal EA, Moudgil B. USA, Florida Institute of Phosphate Research (FIPR), Florida University. 1999.

  34. Abdel-Aal EA. Recovery of phosphoric acid from Egyptian Nile Valley phosphate tailings. Miner Eng J. 2000;13(2):223–6.

    Article  CAS  Google Scholar 

  35. De Waal JC. Production of dicalcium phosphate or monocalcium phosphate from calcium phosphate. US. Patent. 2001; 6,183,712 B1.

  36. Takhim M. Method for the production of phosphoric acid and/or a salt thereof and products thus obtained. US. Patent. 2005; 2005/0238558 A1.

  37. Calmanovici CE, Gilot B, Laguerie C. Mechanism and kinetics for the dissolution of apatitic materials in acid solutions. Braz J Chem Eng. 1997;14(2):95–102.

    Article  CAS  Google Scholar 

  38. Olannipekun EO, Orderinde RA, Okurumeh OKK. Dissolution of phosphorite in dilute hydrochloric acid solution. Pak J Sci Ind Res. 1994;37:183.

    Google Scholar 

  39. Heughebaert JC. Thèse de Doctorat d’état. Toulouse: I. N. P; 1977.

    Google Scholar 

  40. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  41. Prener JS. Nonstoichiometry in calcium chlorapatite. J Solid State Chem. 1971;3:49.

    Article  CAS  Google Scholar 

  42. Soussi-Baatout A, Hichri M, Bechrifa A. Khattech I. Test and calibration processes for the differential reaction calorimeter (DRC): application: dissolution of calcium fluorapatite in the hydrochloric acid. Thermochim Acta. 2014;580:85–92.

    Article  CAS  Google Scholar 

  43. Zendah H, Khattech I, Jemal M. Thermochimcal and kinetic studies of the acid attack of “B” type carbonate fluorapatites at different temperatures (25–55)°C. Thermochim Acta. 2013;565:46–51.

    Article  CAS  Google Scholar 

  44. Antar K, Jemal M. Kinetics and thermodynamics of the attack of a phosphate ore by acid solutions at different temperatures. Thermochim Acta. 2008;474:32–5.

    Article  CAS  Google Scholar 

  45. Levenspeil O. Chemical reaction engineering. 2nd ed. New York: Wiley; 1972. p. 357–77.

    Google Scholar 

  46. Künkül A, Yapıcı S, Kocakerim MM, Çopur M. Dissolution kinetics of ulexite in ammonia solutions saturated with CO2. Hydrometallurgy. 1997;44:135–45.

    Article  Google Scholar 

  47. Alkan M, Dogan M. Dissolution kinetics of colemanite in oxalic acid solutions. Chem Eng Process. 2004;43:867–72.

    Article  CAS  Google Scholar 

  48. Özdemir M. Extraction kinetics of alunite in sulfuric acid and hydrochloric acid. Hydrometallurgy. 2005;76:217–24.

    Article  Google Scholar 

  49. Künkül A, Demirkıran N. Dissolution kinetics of calcined ulexite in ammonium carbonate solutions. Korean J Chem Eng. 2007;26:947–52.

    Article  Google Scholar 

  50. Tuba Doğan H, Yartaşı A. Kinetic investigation of reaction between ulexite ore and phosphoric acid. Hydrometallurgy. 2009;96:294–9.

    Article  Google Scholar 

  51. Özmetin C, Kocakerim MM, Yapıcı S, Yartaşı A. A semiempirical kinetics model for dissolution of colemanite in aqueous CH3COOH solutions. Ind Eng Chem Res. 1996;35:2355–9.

    Article  Google Scholar 

  52. Zafar ZI. Determination of semi empirical kinetic model for dissolution of bauxite ore with sulfuric acid: parametric cumulative effect on the Arrhenius parameters. Chem Eng J. 2008;141(1–3):233–41.

    Article  CAS  Google Scholar 

  53. Wadsworth ME, Miller JD. Hydrometallurgical processes. In: Sohn HY, Wadsworth ME, editors. Rate processes of extractive metallurgy. New York: Plenum Press; 1979. p. 133–86.

    Chapter  Google Scholar 

  54. Gonzalez-Harmandez L, Ibarra-Ruoda L. Preparation of amorphous silica by acid dissolution of sepiolite: kinetic and textural study. J Colloid Interface Sci. 1986;109:150–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Khattech.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, K., Soussi-Baatout, A., Khattech, I. et al. Dissolution kinetics of fluorapatite in the hydrochloric acid solution. J Therm Anal Calorim 129, 701–708 (2017). https://doi.org/10.1007/s10973-017-6221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6221-8

Keywords

Navigation