Skip to main content
Log in

New approach of synthesis of phosphate–sulfates with NZP-type structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New approach of phosphate–sulfate synthesis, preventing sulfur elimination was proposed. It implies sulfur encasement into intermediate with heightened thermal resistance, thus the synthesis temperature of phosphate–sulfate could be increased, and crystallization can be performed. This method is considered to be capable by example of obtaining of Pb2/3FeZr(PO4)7/3(SO4)2/3 ceramic. It was synthesized by means of sol–gel method via formation of intermediate PbSO4, which encased sulfur and eventually led to formation of mentioned before phosphate–sulfate. Obtained sample was characterized via X-ray, IR, combined DTA–TG, SEM and microprobe electron analysis. Crystal structure and unit cell parameters were derived from least-squares refinement of powder X-ray diffraction data (NZP-type, sp. gr.\({\text{R}}\bar{3}{\text{c}}\), a = 8.6339 Å, c = 23.2991 Å, V = 1504.1 Å3). Thermal expansion (α a = 0.96·10−6, α c = 3.24·10−6, α av = 1.76·10−6 K−1) of compound also has been studied. There is a wide area of interest, due to development of ceramics with low thermal expansion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pet’kov VI, Asabina EA, Sukhanov MV, Schelokov IA, Shipilov AS, Alekseev AA. Design and characterization of phosphate-containing ceramics with Kosnarite- and Langbeinite-type structures for industrial applications. Chem Eng Trans. 2015;43:1825–30.

    Google Scholar 

  2. Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46:2821–37.

    Article  CAS  Google Scholar 

  3. Pet’kov VI. Complex phosphates formed by metal cations in oxidation states I and IV. Russ Chem Rev. 2012;81:606–37.

    Article  Google Scholar 

  4. Arbi K, Bucheli W, Jimenez R, Sanz J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J Eur Ceram Soc. 2015;35:1477–84.

    Article  CAS  Google Scholar 

  5. Pet’kov VI, Asabina EA, Shchelokov IA. Thermal expansion of NASICON materials. Inorg Mater. 2013;49:502–6.

    Article  Google Scholar 

  6. Bohre A, Awasthi K, Shrivastava OP. Immobilization of lanthanum, cerium, and selenium into ceramic matrix of sodium zirconium phosphate. Radiochemistry. 2014;56:385–91.

    Article  CAS  Google Scholar 

  7. Kim J, Jo SH, Bhavaraju S, Eccleston A, Kang SO. Low temperature performance of sodium–nickel chloride batteries with NASICON solid electrolyte. J Electroanal Chem. 2015;759:201–6.

    Article  CAS  Google Scholar 

  8. Pet’kov V, Asabina E, Loshkarev V, Sukhanov M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J Nucl Mater. 2016;471:122–8.

    Article  Google Scholar 

  9. Ilin AB, Orekhova NV, Ermilova MM, Yaroslavtsev AB. Catalytic activity of LiZr2(PO4)3 nasicon-type phosphates in ethanol conversion process in conventional and membrane reactors. Catal Today. 2016;268:29–36.

    Article  CAS  Google Scholar 

  10. Ivanov-Shitz AK, Murin IV. Ionika tverdogo tela (Solid-State Ionics). St. Petersburg: Gos. Univ; 2001.

    Google Scholar 

  11. Pérez-Estébanez M, Isasi-Marín J, Többens DM, Rivera-Calzada A, León C. A systematic study of Nasicon-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion. 2014;266:1–8.

    Article  Google Scholar 

  12. Ortiz GF, López MC, Lavela P, Vidal-Abarca C, Tirado JL. Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping. Solid State Ion. 2014;262:573–7.

    Article  CAS  Google Scholar 

  13. Liu XS, Li F, Song WB, Yuan BH, Cheng YG, Liang EJ, et al. Control of reaction processes for rapid synthesis of low-thermal-expansion Ca1−xSrxZr4P6O24 ceramics. Ceram Int. 2014;40:6013–20.

    Article  CAS  Google Scholar 

  14. Pet’kov VI, Shipilov AS, Sukhanov MV. Thermal Expansion of MZr2(AsO4)3 and MZr2(TO4)x(PO4)3−x (M = Li, Na, K, Rb, Cs; T = As, V). Inorg Mater. 2015;51:1179–85.

    Google Scholar 

  15. Pet’kov VI, Orlova AI. Crystal chemical approach to predicting the thermal expansion of compounds in the NZP family. Inorg Mater. 2003;39:1013–23.

    Article  Google Scholar 

  16. Pet’kov VI, Orlova AI, Kasantsev GN, Samoilov SG, Spiridonova ML. Thermal expansion in the Zr and 1-, 2-valent complex phosphates of NaZr2(PO4)3 (NZP) structure. J Therm Anal Calorim. 2001;66:623–32.

    Article  Google Scholar 

  17. Oikonomou P, Dedeloudis C, Stournaras CJ, Ftikos C. [NZP]: a new family of ceramics with low thermal expansion and tunable properties. J Eur Ceram Soc. 2007;27:1253–8.

    Article  CAS  Google Scholar 

  18. Pet’kov VI, Asabina EA. Thermophysical properties of NZP ceramics (a review). Glass Ceram. 2004;61:233–9.

    Article  Google Scholar 

  19. Lenain GE, McKinstry HA, Alamo J, Agraval DK. Structural model for thermal expansion in MZr2P3O12 (M = Li, Na, K, Rb, Cs). J Mater Sci. 1987;22:17–22.

    Article  CAS  Google Scholar 

  20. Pet’kov VI, Asabina EA, Markin AV, Smirnova NN. Synthesis, characterization and thermodynamic data of compounds with NZP structure. J Therm Anal Calorim. 2007;91:155–61.

    Article  Google Scholar 

  21. Malecki S. Reduction of lead and zinc sulfates by hydrogen. J Therm Anal Calorim. 2015;121:861–6.

    Article  CAS  Google Scholar 

  22. Dey A, Das Gupta A, Basu D, Ambashta RD, Wattal PK, Kumar S, Sen D, Mazumber S. A comparative study of conventionally sintered, microwave sintered and hot isostatic press sintered NZP and CZP structures interacted with fluoride. Ceram Int. 2013;39:9351–9.

    Article  CAS  Google Scholar 

  23. Kim Y-I, Izumi F. Structure refinements with a new version of the Rietveld-refinement program RIETAN. J Ceram Soc Jpn. 1994;102:401–4.

    Article  CAS  Google Scholar 

  24. Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22:151–2.

    Article  CAS  Google Scholar 

  25. Izumi F. The Rietveld method. Young RA, editor. Oxford: Oxford Univ. Press; 1993.

  26. Eremin NN, Sukhanov MV, Pet’kov VI, Urusov VS. Interatomic potentials for structural modeling of double alkali-metal zirconium orthophosphates. Dokl Chem. 2004;396:107–10.

    Article  CAS  Google Scholar 

  27. Piffard Y, Verbaere A, Kinoshita M. β-Zr2(PO4)2SO4: a zirconium phosphato-sulfate with a Sc2(WO4)3 structure. A comparison between garnet, nasicon, and Sc2(WO4)3 structure types. J Solid State Chem. 1987;71:121–30.

    Article  CAS  Google Scholar 

  28. Miyazaki H, Ushiroda I, Itomura D, Hirashita T, Adachi N, Ota T. Thermal expansion of NaZr2(PO4)3 family ceramics in a low-temperature range. Jpn J Appl Phys. 2008;47:7262–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was performed at the Lobachevsky State University of Nizhni Novgorod with the financial support of the Russian Foundation for Basic Research (Project No. 15-03-00716 a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Dmitrienko, A.S., Sukhanov, M.V. et al. New approach of synthesis of phosphate–sulfates with NZP-type structure. J Therm Anal Calorim 127, 2093–2099 (2017). https://doi.org/10.1007/s10973-016-5724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5724-z

Keywords

Navigation