Skip to main content
Log in

Synthesis, phase formation, and thermal expansion of sulfate phosphates with the NaZr2(PO4)3 structure

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The NaFeZr(PO4)2SO4 and Pb2/3FeZr(PO4)7/3(SO4)2/3 sulfate phosphates with the NaZr2(PO4)3 (NZP) structure were synthesized and studied using X-ray diffraction, electron microprobe analysis, IR spectroscopy, and simultaneous differential thermal and thermogravimetric analysis. The phase formation and thermal stability of the compounds were studied by powder X-ray diffraction and DTA–TG. The Pb2/3FeZr(PO4)7/3(SO4)2/3 structure was refined by full-profile analysis. The structure framework is composed of randomly occupied (Fe,Zr)O6 octahedra and (P,S)O4 tetrahedra; the Pb2+ ions occupy extra-framework sites. The thermal expansion of Pb2/3FeZr(PO4)7/3(SO4)2/3 in the temperature range from–120 to 200°C was studied by temperature X-ray diffraction. In terms of the average linear coefficient of thermal expansion (αav = 1.7 × 10–6°C–1), this compound can be classified as having low expansion. The combination of different tetrahedral anions (a phosphorus and a smaller sulfur one) in the NZP resulted in a decrease in the framework size and cavities and enabled the preparation of low-expansion sulfate phosphate with a smaller extra-framework cation (cheap Pb) instead of larger cations (Cs, Ba, Sr) used most often in the monoanionic phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Brownfield, E. E. Foord, S. J. Sutley, et al., Am. Mineral. 78, 653 (1993).

    CAS  Google Scholar 

  2. V. I. Pet’kov, Russ. Chem. Rev. 81, 606 (2012).

    Article  Google Scholar 

  3. M. V. Sukhanov, V. I. Pet’kov, V. S. Kurazhkovskaya, et al., Russ. J. Inorg. Chem. 51, 706 (2006).

    Article  Google Scholar 

  4. M. V. Sukhanov, V. I. Pet’kov, D. V. Firsov, et al., Russ. J. Inorg. Chem. 56, 1351 (2011).

    Article  CAS  Google Scholar 

  5. V. I. Pet’kov, M. V. Sukhanov, A. S. Shipilov, et al., Russ. J. Inorg. Chem. 58, 1015 (2013).

    Article  Google Scholar 

  6. V. I. Pet’kov, M. V. Sukhanov, A. S. Shipilov, et al., Inorg. Mater. 50, 263 (2014).

    Article  Google Scholar 

  7. V. I. Pet’kov, A. S. Shipilov, M. V. Sukhanov, et al., Russ. J. Inorg. Chem. 59, 1201 (2014).

    Article  Google Scholar 

  8. A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (Izd. SPbGU, St. Petersburg, 2001), Vol. 1 [in Russian].

    Google Scholar 

  9. V. I. Pet’kov and A. I. Orlova, Inorg. Mater. 39, 1013 (2003).

    Article  Google Scholar 

  10. N. Anantharamulu, Rao K. Koteswara, G. Rambabu, et al., J. Mater. Sci. 46, 2821 (2011).

    Article  CAS  Google Scholar 

  11. V. I. Pet’kov, A. I. Orlova, G. N. Kasantsev, et al., J. Therm. Anal. Cal. 66, 623 (2001).

    Article  Google Scholar 

  12. S. Y. Limaye, D. K. Agrawal, and H. A. McKinstry, J. Am. Ceram. Soc. 70, 232 (1987).

    Article  Google Scholar 

  13. H. Miyazaki, I. Ushiroda, D. Itomura, et al., Jpn. J. Appl. Phys. 47, 7262 (2008).

    Article  CAS  Google Scholar 

  14. B. Zhang and J. Guo, J. Eur. Ceram. Soc. 15, 929 (1995).

    Article  CAS  Google Scholar 

  15. P. Oikonomou, Ch. Dedeloudis, C. J. Stournaras, et al., J. Eur. Ceram. Soc. 27, 1253 (2007).

    Article  CAS  Google Scholar 

  16. V. I. Pet’kov and E. A. Asabina, Glass Ceram., 61, 233 (2004).

    Article  Google Scholar 

  17. J. Alamo and R. Roy, J. Solid State Chem. 51, 270 (1984).

    Article  CAS  Google Scholar 

  18. R. Masse, J. C. Guitel, and R. Perret, Bul. Soc. Fr. Mineral. Crist. 96, 346 (1973).

    CAS  Google Scholar 

  19. P. R. Slater and C. Greaves, J. Mater. Chem. 2, 1267 (1992).

    Article  CAS  Google Scholar 

  20. P. R. Slater and C. Greaves, J. Mater. Chem. 4, 1469 (1994).

    Article  CAS  Google Scholar 

  21. M. V. Sukhanov, V. I. Pet’kov, and D. V. Firsov, Inorg. Mater. 47, 674 (2011).

    Article  CAS  Google Scholar 

  22. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  CAS  Google Scholar 

  23. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994).

    Article  CAS  Google Scholar 

  24. F. Izumi, The Rietveld Method, Ed. by R. A. Ch. Young (Oxford Univ. Press, New York, 1993).

  25. G. Buvanesvari and U. V. Varadaraju, J. Solid State Chem. 145, 227 (1999).

    Article  Google Scholar 

  26. H. Y-P. Hong, Mater. Res. Bul. 11, 173 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Additional information

Original Russian Text © V.I. Pet’kov, A.S. Dmitrienko, M.V. Sukhanov, A.M. Koval’skii, E.Yu. Borovikova, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 5, pp. 654–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Dmitrienko, A.S., Sukhanov, M.V. et al. Synthesis, phase formation, and thermal expansion of sulfate phosphates with the NaZr2(PO4)3 structure. Russ. J. Inorg. Chem. 61, 623–629 (2016). https://doi.org/10.1134/S0036023616050168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616050168

Navigation