Skip to main content
Log in

Rigid amorphous fraction and multiple melting behavior in poly(butylene terephthalate) and isotactic polystyrene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The multiple melting behavior of many semicrystalline polymers is generally attributed to fusion of original crystals reorganized/recrystallized upon heating at conventional scanning rates. In the present study, the triple and double melting behavior of poly(butylene terephthalate) (PBT) and isotactic polystyrene (iPS), which is observed after isothermal crystallization at low and high T c s, respectively, is put into relation with the presence and absence of rigid amorphous/crystal interphase around the original primary crystals. Such constrained amorphous interphase has been recognized as decisive for the definition of the mechanical, thermal, and barrier properties of semicrystalline polymers. The method for the approximate determination of the limit temperature for the presence of this rigid amorphous fraction (RAF), already applied to poly[(R)-3-hydroxybutyrate] (PHB) and poly(ethylene terephthalate) (PET), is here utilized for PBT and iPS. The complex melting behavior displayed by all these polymers is explained by assuming that two distinct morphologies of primary crystals develop during crystallization at temperatures lower than the RAF limit temperature, in a percentage that is a function of the crystallization temperature. Simultaneously with the RAF devitrification, these distinct morphologies differently reorganize/recrystallize upon heating at low scanning rate, originating the triple melting behavior. On the contrary, after crystallization at high T c s, a single reorganization route is followed by all the primary crystalline structures, characterized by the same morphology made of tightly chain-folded lamellae and absence of vitrified RAF at the amorphous/crystal interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Menczel Jd, Wunderlich B. Heat capacity hysteresis of semicrystalline macromolecular glasses. J Polym Sci Polym Lett. 1981;19:261–4.

    Article  CAS  Google Scholar 

  2. Wunderlich B. Reversible crystallization and the rigid amorphous phase in semicrystalline macromolecules. Prog Polym Sci. 2003;28:383–450.

    Article  CAS  Google Scholar 

  3. Di Lorenzo ML, Righetti MC. The three-phase structure of isotactic poly(1-butene). Polymer. 2008;49:1323–31.

    Article  Google Scholar 

  4. Pieruccini M, Flores A, Nöchel U, Di Marco G, Stribeck N, Baltá-Calleja FJ. The role of the amorphous phase in the re-crystallization process of cold-crystallized poly(ethylene terephthalate). Eur Phys J E. 2008;27:365–73.

    Article  CAS  Google Scholar 

  5. Kolesov I, Androsch R. The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer. 2012;53:4770–7.

    Article  CAS  Google Scholar 

  6. Martin S, Exposito MT, Vega JF, Martinez-Salazar J. Microstructure and properties of branched polyethylene: application of a three-phase structural model. J Appl Polym Sci. 2013;128:1871–8.

    CAS  Google Scholar 

  7. Nguyen TL, Bédoui F, Mazeran P-E, Guigon M. Mechanical investigation of confined amorphous phase in semicrystalline polymers: case of PET and PLA. Polym Eng Sci. 2015;55:397–405.

    Article  CAS  Google Scholar 

  8. Lin J, Shenogin S, Nazarenko S. Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephthalate). Polymer. 2002;43:4733–43.

    Article  CAS  Google Scholar 

  9. Olson BG, Lin J, Nazarenko S, Jamieson AM. Positron annihilation lifetime spectroscopy of poly(ethylene terephthalate): contributions from rigid and mobile amorphous fractions. Macromolecules. 2003;36:7618–23.

    Article  CAS  Google Scholar 

  10. Drieskens M, Peeters R, Mullen J, Franco D, Lemstra PJ, Hristova-Bogaerds DG. Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J Polym Sci Polym Phys. 2009;7:2247–58.

    Article  Google Scholar 

  11. Delpouve N, Stoclet G, Saiter A, Dargent E, Marais S. Water barrier properties in biaxially drawn poly(lactic acid) films. J Phys Chem B. 2012;116:4615–25.

    Article  CAS  Google Scholar 

  12. Guinault A, Sollogoub C, Ducruet V, Domenek S. Impact of crystallinity of poly(lactide) on helium and oxygen barrier properties. Eur Polym J. 2012;48:779–88.

    Article  CAS  Google Scholar 

  13. Schick C, Wurm A, Mohammed A. Formation and disappearance of the rigid amorphous fraction in semicrystalline polymers revealed from frequency dependent heat capacity. Thermochim Acta. 2003;396:119–32.

    Article  CAS  Google Scholar 

  14. Androsch R, Wunderlich B. The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer. 2005;46:12556–66.

    Article  CAS  Google Scholar 

  15. Righetti MC, Tombari E, Angiuli M, Di Lorenzo ML. Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers: poly(ethylene terephthalate). Thermochim Acta. 2007;462:15–24.

    Article  CAS  Google Scholar 

  16. Chen H, Cebe P. Vitrification and devitrification of rigid amorphous fraction of PET during quasi-isothermal cooling and heating. Macromolecules. 2009;42:288–92.

    Article  CAS  Google Scholar 

  17. Xu H, Ince S, Cebe P. Development of the crystallinity and rigid amorphous fraction in cold-crystallized isotactic polystyrene. J Polym Sci Polym Phys. 2003;41:3026–36.

    Article  CAS  Google Scholar 

  18. Xu H, Cebe P. Heat capacity study of isotactic polystyrene: dual reversing crystal melting and relaxation of rigid amorphous fraction. Macromolecules. 2004;37:2797–806.

    Article  CAS  Google Scholar 

  19. Righetti MC, Tombari E, Di Lorenzo ML. Crystalline, mobile amorphous and rigid amorphous fractions in isotactic polystyrene. Eur Polym J. 2008;44:2659–26676.

    Article  CAS  Google Scholar 

  20. Righetti MC, Tombari E. Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta. 2011;522:118–27.

    Article  CAS  Google Scholar 

  21. Di Lorenzo ML, Gazzano M, Righetti MC. The role of the rigid amorphous fraction on cold crystallization of poly(3-hydroxybutyrate). Macromolecules. 2012;45:5684–91.

    Article  Google Scholar 

  22. Righetti MC, Tombari E, Di Lorenzo ML. The role of the crystallization temperature on the nanophase structure evolution of poly[(R)-3-hydroxybutyrate]. J Phys Chem B. 2013;117:12303–11.

    Article  CAS  Google Scholar 

  23. Righetti MC, Laus M, Di Lorenzo ML. Temperature dependence of the rigid amorphous fraction in poly(ethylene terephthalate). Eur Polym J. 2014;58:60–8.

    Article  CAS  Google Scholar 

  24. Bras AR, Malik P, Dionisio M, Mano JF. Influence of crystallinity in molecular motions of poly(l-lactic acid) investigated by dielectric relaxation spectroscopy. Macromolecules. 2008;41:6419–30.

    Article  CAS  Google Scholar 

  25. Hong P-D, Chuang W-T, Yeh W-J, Lin T-L. Effect of rigid amorphous phase on glass transition behaviour of poly(trimethylene terephthalate). Polymer. 2002;43:6879–86.

    Article  CAS  Google Scholar 

  26. Sanz A, Nogales A, Ezquerra TA, Lotti N, Munari A, Funari SS. Order and segmental mobility during polymer crystallization: poly(butylene isophthalate). Polymer. 2006;47:1281–90.

    Article  CAS  Google Scholar 

  27. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  28. Di Lorenzo ML, Righetti MC. Evolution of crystal and amorphous fractions of poly[(R)-3-hydroxybutyrate] upon storage. J Therm Anal Calorim. 2013;112:1439–46.

    Article  Google Scholar 

  29. Di Lorenzo ML, Righetti MC, Cocca M, Wunderlich B. Coupling between crystal melting and rigid amorphous fraction mobilization in poly(ethylene terephthalate). Macromolecules. 2013;43:7689–94.

    Article  Google Scholar 

  30. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B. Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Polym Phys. 2006;44:1364–77.

    Article  CAS  Google Scholar 

  31. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  32. Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.

    Article  Google Scholar 

  33. Righetti MC, Laus M. The biphasic behaviour of a thermotropic polymesomorphic polyester I. Time evolution of phase separation. Polymer. 2000;41:8355–62.

    Article  CAS  Google Scholar 

  34. Righetti MC, Boggioni A, Laus M, Antonioli D, Sparnacci K, Boarino L. Thermal and mechanical properties of PES/PTFE composites and nanocomposites. J Appl Polym Sci. 2013;130:3624–33.

    Article  CAS  Google Scholar 

  35. Capaccio G, Ward IM. Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties. Polymer. 1974;15:233–8.

    Article  CAS  Google Scholar 

  36. Zhou C, Clough SB. Multiple melting endotherms of poly(ethylene terephthalate). Polym Eng Sci. 1988;28:65–8.

    Article  CAS  Google Scholar 

  37. Kong Y, Hay JN. Multiple melting behaviour of poly(ethyelene terephthalate). Polymer. 2003;44:623–33.

    Article  CAS  Google Scholar 

  38. Minakov AA, Mordvintsev DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer. 2004;45:3755–63.

    Article  CAS  Google Scholar 

  39. Nichols ME, Robertson RE. The multiple endotherms from poly(butylene terephthalate). J Polym Sci Polym Phys. 1992;30:755–68.

    Article  CAS  Google Scholar 

  40. Righetti MC, Di Lorenzo ML, Angiuli M, Tombari E. Structural reorganization in poly(butylene terephthalate) during fusion. Macromolecules. 2004;37:9027–33.

    Article  CAS  Google Scholar 

  41. Lemstra PJ, Kooistra T, Challa G. Melting behaviour of isotactic polystyrene. J Polym Sci Polym Phys. 1972;10:823–33.

    Article  CAS  Google Scholar 

  42. Minakov AA, Mordvintsev DA, Tol R, Schick C. Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta. 2006;442:25–30.

    Article  CAS  Google Scholar 

  43. Pearce R, Marchessault RH. Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer. 1994;35:3990–7.

    Article  CAS  Google Scholar 

  44. de Koning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 3. Toughening via texture changes. Polymer. 1994;35:4598–605.

    Article  Google Scholar 

  45. Sawayanagi T, Tanaka T, Iwata T, Abe H, Doi Y, Ito K, Fujisawa T, Fujita M. Real-time synchrotron SAXS and WAXS studies on annealing behaviour of poly[(R)-3-hydroxybutyrate] single crystals. Macromolecules. 2006;39:2201–8.

    Article  CAS  Google Scholar 

  46. Medellin-Rodriguez FJ, Phillips PJ, Lin JS, Campos R. The triple melting behavior of poly(ethylene terephthalate): molecular weight effects. J Polym Sci Polym Phys. 1997;35:1757–74.

    Article  Google Scholar 

  47. Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  48. Sarge SM, Hemminger W, Gmelin E, Höhne GWH, Cammenga HK, Eysel W. Metrologically bases procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal. 1997;49:1125–34.

    Article  CAS  Google Scholar 

  49. Mamum A, Okui N, Khan MAK. Crystallization kinetics of isotactic polystyrene from molten and glassy states. Can Chem Trans. 2013;1:267–76.

    Google Scholar 

  50. Wurm A, Merzlyakov M, Schick C. Reversible melting probed by temperature modulated dynamic mechanical and calorimetric measurements. Colloid Polym Sci. 1998;276:289–96.

    Article  CAS  Google Scholar 

  51. Androsch R, Moon I, Kreitmeier S, Wunderlich B. Determination of heat capacity with a sawtooth–type, power compensated temperature modulated DSC. Thermochim Acta. 2000;357–358:267–78.

    Article  Google Scholar 

  52. Pyda M, The advanced thermal analysis system (ATHAS) databank—polymer thermodynamics. In: Springer materials. Berlin: Springer; 2014. http://materials.springer.com/polymerthermodynamics.

  53. Pyda M, Nowak-Pyda E, Mays J, Wunderlich B. Heat capacity of poly(butylene terephthalate). J Polym Sci Polym Phys. 2004;42:4401–11.

    Article  CAS  Google Scholar 

  54. Di Lorenzo MC, Wunderlich B. Melting of polymers by non-isothermal, temperature-modulated calorimetry: analysis of various irreversible latent heat contributions to the reversing heat capacity. Thermochim Acta. 2003;405:255–68.

    Article  Google Scholar 

  55. Righetti MC, Di Lorenzo ML, Tombari E, Angiuli M. The low-temperature endotherm in poly(ethylene terephthalate): partial melting and rigid amorphous fraction mobilization. J Phys Chem B. 2008;112:4233–41.

    Article  CAS  Google Scholar 

  56. Righetti MC. Reversible melting in poly(butylene terephthalate). Thermochim Acta. 1999;330:131–5.

    Article  Google Scholar 

  57. Wunderlich B. Methodology of interpreting thermal analysis of polymers. J Therm Anal Calorim. 2011;106:85–91.

    Article  CAS  Google Scholar 

  58. Mathot VBF. Thermal characterization of states of matter. In: Mathot VBF, editor. Calorimetry and thermal analysis of polymers. Munich: Hanser Verlag; 1994. p. 105–67.

    Google Scholar 

  59. Righetti MC, Laus M, Di Lorenzo ML. Rigid amorphous fraction and melting behaviour of poly(ethylene terephthalate). Colloid Polym Sci. 2014;292:1365–74.

    Article  CAS  Google Scholar 

  60. Flores A, Pieruccini M, Stribeck N, Funari SS, Bosch E, Baltá-Calleja FJ. Structure formation in poly(ethylene terephthalate) upon annealing as revealed by microindentation hardness and X-ray scattering. Polymer. 2005;46:9404–10.

    Article  CAS  Google Scholar 

  61. Flores A, Pieruccini M, Nöchel U, Stribeck N, Baltá-Calleja FJ. Recrystallization studies on isotropic cold-crystallized PET: influence of heating rate. Polymer. 2008;49:965–73.

    Article  CAS  Google Scholar 

  62. Fontaine F, Ledent J, Groeninckx G, Reynaers H. Morphological and melting behaviour of semicrystalline poly(ethylene terephthalate). 3. Quantification of crystal perfection and crystallinity. Polymer. 1982;23:185–91.

    Article  CAS  Google Scholar 

  63. Jonas AM, Russell TP, Yoon DY. Time resolved SAXS studies of morphological changes in cold crystallized poly(ethylene terephthalate) during annealing and heating. Colloid Polym Sci. 1994;272:1344–51.

    Article  CAS  Google Scholar 

  64. Kim HG, Robertson RE. Multiple melting endotherms in isothermally melt-crystallized poly(butylene terephthalate). J Polym Sci Polym Phys. 1998;36:1757–67.

    Article  CAS  Google Scholar 

  65. Duan Y, Zhang Y, Shen D, Yan S. In situ FTIR studies on the cold-crystallization process and multiple melting behaviour of isotactic polystyrene. Macromolecules. 2003;36:4874–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Righetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Righetti, M.C., Di Lorenzo, M.L. Rigid amorphous fraction and multiple melting behavior in poly(butylene terephthalate) and isotactic polystyrene. J Therm Anal Calorim 126, 521–530 (2016). https://doi.org/10.1007/s10973-016-5553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5553-0

Keywords

Navigation