Skip to main content
Log in

Effect of styrene–butadiene–styrene triblock copolymer on non-isothermal crystallization kinetics and melting behavior of syndiotactic 1, 2-polybutadiene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Syndiotactic 1,2-polybutadiene (s-PB), as a semi-crystalline polymer, has many excellent properties, such as thermal stability and processability. Meanwhile, styrene–butadiene–styrene triblock copolymer (SBS) is an amorphous thermoplastic elastomer. Therefore, modifying s-PB with SBS will affect the crystallization and melting behavior of s-PB/SBS blends. In this work, differential scanning calorimetry technique was used to investigate the effect of the introduction of SBS on non-isothermal crystallization and melting behavior of s-PB. Non-isothermal crystallization kinetics was analyzed by Jeziorny, Ozawa and Mo’s methods. Jeziorny method indicates that the crystallization process can be divided into two stages as primary crystallization and secondary crystallization. Mo’s method gives a better description of the non-isothermal crystallization kinetics of s-PB/SBS blends (the mass ratios are 100/0, 95/5, 90/10, and 80/20). These two methods both indicate that the crystal process becomes difficult with increasing SBS content, but the introduction plays little or no effect on the nucleation mechanism and crystal growth type of s-PB in the bends. Comparatively, Ozawa method is not suitable for this system. The effective energy barriers during the non-isothermal crystallization process are also analyzed via Friedman method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Somrang N, Nithitanakul M, Grady BP, Supaphol P. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. Eur Polym J. 2004;40:829–38.

    Article  CAS  Google Scholar 

  2. Jalali A, Shahbikian S, Huneault MA, Elkoun S. Effect of molecular weight on the shear-induced crystallization of poly(lactic acid). Polymer. 2017;112:393–401.

    Article  CAS  Google Scholar 

  3. Mohapatra S, Samanta S, Kothari K, Mistry P, Suryanarayanan R. Effect of polymer molecular weight on the crystallization behavior of indomethacin amorphous solid dispersions. Cryst Growth Des. 2017;17:3142–50.

    Article  CAS  Google Scholar 

  4. Wamuo O, Wu Y, Hsu SL, Paul CW, Eodice A, Huang KY. Effects of chain configuration on the crystallization behavior of polypropylene based copolymers. Polymer. 2017;116:342–9.

    Article  CAS  Google Scholar 

  5. Cavallo D, Gardella L, Alfonso GC, Portale G, et al. Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci. 2011;289:1073–9.

    Article  CAS  Google Scholar 

  6. Yang J, Liang Y, Han CC. Effect of crystallization temperature on the interactive crystallization behavior of poly(l-lactide)-block-poly(ethylene glycol) copolymer. Polymer. 2015;79:56–64.

    Article  CAS  Google Scholar 

  7. Doan VA, Nobukawa S, Ohtsubo S, Tada T, Yamaguchi M. Crystallization behavior of polybutadiene containing silica particles. J Appl Polym Sci. 2013;128:1848–53.

    CAS  Google Scholar 

  8. Dai Q, Zhang X, Hu Y, He J, et al. Regulation of the cis-1,4- and trans-1,4-polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules. 2017;50:7787–94.

    Article  CAS  Google Scholar 

  9. Cai JL, Han Y, Yuan ZR, Cheng RS, et al. Crystallization behavior of syndiotactic and atactic 1,2-polybutadiene blends. Polym Int. 2004;53:1127–37.

    Article  CAS  Google Scholar 

  10. Lorenzo MLD. Crystallization kinetics of cis-1,4-polybutadiene. J Appl Polym Sci. 2010;116:1408–13.

    Google Scholar 

  11. Natta G, Corradini P. The crystal structure of cis 1,4 polybutadiene. Ster Polym Ster Polym. 1960;15:111–21.

    CAS  Google Scholar 

  12. Yang X, Cai J, Kong X, Dong W, et al. Size-affected crystallization of trans-1,4-polybutadiene. Eur Polym J. 2001;37:763–9.

    Article  CAS  Google Scholar 

  13. Bertini F, Canetti M, Ricci G. Crystallization and melting behavior of 1,2-syndiotactic polybutadiene. J Appl Polym Sci. 2004;92:1680–7.

    Article  CAS  Google Scholar 

  14. Ren M, Chen Q, Song J, Zhang H, et al. Crystallization kinetics and melting behavior of syndiotactic 1,2-polybutadiene. J Polym Sci Part B Polym Phys. 2005;43:553–61.

    Article  CAS  Google Scholar 

  15. Sasaki T, Sunago H, Hoshikawa T. Multiple melting behavior of syndiotactic 1,2-polybutadiene. Polym Eng Sci. 2003;43:629–38.

    Article  CAS  Google Scholar 

  16. Cai J, Li T, Han Y, Zhuang Y, Zhang X. Nonisothermal crystallization kinetics and morphology of self-seeded syndiotactic 1,2-polybutadiene. J Appl Polym Sci. 2010;100:1479–91.

    Article  CAS  Google Scholar 

  17. Wu G, Zeng S, Ou E, Yu P, et al. Photoinitiator grafted styrene-butadiene-styrene triblock copolymer. Mater Sci Eng C. 2010;30:1030–7.

    Article  CAS  Google Scholar 

  18. Munteanu SB, Brebu M, Vasile C. Thermal and thermo-oxidative behaviour of butadiene-styrene copolymers with different architectures. Polym Degrad Stab. 2005;89:501–12.

    Article  CAS  Google Scholar 

  19. Bruce XF, Andre Lee A, Haddad TS. Styrene-butadiene-styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules. 2004;37:5211–8.

    Article  CAS  Google Scholar 

  20. Ibrahim BA, Kadum KM. Morphology studies and mechanical properties for PS/SBS blends. Int J Eng Technol. 2012;12:19–27.

    Google Scholar 

  21. Ma BS, Xia QB, Yin JC, Guo CM, et al. The distribution of rubber oil in oil-extended thermoplastic elastomer styrene-butadiene-styrene. J Elastom Plast. 2016;48:239–50.

    Article  CAS  Google Scholar 

  22. Rademacher C, Luo S, Chen Z, et al. Process for producing blends of syndiotactic 1,2-polybutadiene and rubbery elastomers. 2011; US. 8067503 B2.

  23. Obata Y, Tosaki C, Ikeyama M. Bulk properties of syndiotactic 1,2-polybutadiene. I. Thermal and viscoelastic properties. Polym J. 1975;7:207–16.

    Article  CAS  Google Scholar 

  24. Zhang J, Chen S, Su J, Shi X, Jin J, Wang X. Non-isothermal crystallization kinetics and melting behavior of EAA with different acrylic acid content. J Therm Anal Calorim. 2009;97:959–67.

    Article  CAS  Google Scholar 

  25. Tarani E, Wurm A, Schick C, Bikiaris DN, et al. Effect of graphene nanoplatelets diameter on non-isothermal crystallization kinetics and melting behavior of high density polyethylene nanocomposites. Thermochim Acta. 2016;643:94–103.

    Article  CAS  Google Scholar 

  26. Chen S, Jin J, Zhang J. Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1). J Therm Anal Calorim. 2011;103:229–36.

    Article  CAS  Google Scholar 

  27. Sohn S, Alizadeh A, Marand H. On the multiple melting behavior of bisphenol-A polycarbonate. Polymer. 2000;41:8879–86.

    Article  CAS  Google Scholar 

  28. Layachi A, Frihi D, Satha H, Seguela R, et al. Non-isothermal crystallization kinetics of polyamide 66/glass fibers/carbon black composites. J Therm Anal Calorim. 2016;124:1319–29.

    Article  CAS  Google Scholar 

  29. Mya KY, Pramoda KP, He CB. Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core. Polymer. 2006;47:5035–43.

    Article  CAS  Google Scholar 

  30. Lian D, Dai J, Zhang R, Niu M. Effect of Ti-SiO2 nanoparticles on non-isothermal crystallization of polyphenylene sulfide fibers. J Therm Anal Calorim. 2017;129:377–90.

    Article  CAS  Google Scholar 

  31. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  32. Chen T, Zhang J. Non-isothermal cold crystallization kinetics of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) copolyesters with different compositions. Polym Test. 2015;48:23–30.

    Article  CAS  Google Scholar 

  33. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  34. Zhang F, Hu C. The research for thermal behaviour, creep properties and morphology of SBS-modified asphalt. J Therm Anal Calorim. 2015;121:651–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Zhang, J. Effect of styrene–butadiene–styrene triblock copolymer on non-isothermal crystallization kinetics and melting behavior of syndiotactic 1, 2-polybutadiene. J Therm Anal Calorim 136, 2269–2280 (2019). https://doi.org/10.1007/s10973-018-7885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7885-4

Keywords

Navigation