Skip to main content
Log in

Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Internal damping process in a ribbon of NiTi shape memory alloy (NiTi SMA) during a reverse transformation, from low temperature phase (martensite) to high temperature phase (austenite), has been studied by dynamic mechanical analysis (DMA) and using fractional calculus for the experimental data analysis. A mechanical fractional model for the description of dynamic modulus, \(E^{*}\), has been developed for this purpose. This fractional model takes into account the relaxation peak associated with internal damping, and its corresponding differential equation has derivatives of fractional order between 0 and 1. By applying Fourier transform to fractional differential equation and considering cooperative or noncooperative atomic mobility, the real and imaginary parts of \(E^{*}\) have been computed. An agreement between experimental data and theoretical results of fractional model has been achieved. The fractional order parameters of the model are related to atomic mobility associated with internal damping of NiTi SMA ribbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yin S, Rayess N. Characterization of polymer-metal foam hybrids for use in vibration dampening and isolation. Proc Mater Sci. 2014;4:311–6.

    Article  Google Scholar 

  2. Ionita D, Cristea M, Banabic D. Viscoelastic behavior of PMMA in relation to deformation mode. J Therm Anal Calorim. 2015;20:1775–83.

    Article  Google Scholar 

  3. Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Méndez U. On the modeling of the dynamic-elastic modulus for polymer materials under isochronal conditions. J Appl Polym Sci. 2004;94:657–70.

    Article  CAS  Google Scholar 

  4. Reyes-Melo ME, González-González VA, Guerrero-Salazar CA, García-Cavazos F, Ortiz-Méndez U. Application of fractional calculus to the modeling of the complex rheological behavior of polymers: from the glass transition to flow behavior. I the theoretical model. J Appl Polym Sci. 2008;108:731–7.

    Article  CAS  Google Scholar 

  5. Worzakowska M. Thermal and mechanical properties of polystyrene modified with esters derivatives of 3-phenylprop-2-en-1-ol. J Therm Anal Calorim. 2015;121:235–43.

    Article  CAS  Google Scholar 

  6. Shehzad F, Daud M, Al-Harthil MA. Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J Therm Anal Calorim. 2016;123:1501–11.

    Article  CAS  Google Scholar 

  7. Barbarino S, Saavedra-Flores EI, Ajaj RM, Dayyani I, Friswell MI. A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct. 2014;23:063001–19.

    Article  Google Scholar 

  8. Cuéllar EL, Melo ER, Martínez-de la Cruz A, Loera AG, Morin M. Changes in the thermoelectric power of a Ni base superalloy induced by elastic and plastic strain. J Alloys Compd. 2011;509:7297–302.

    Article  Google Scholar 

  9. Cuéllar EL, Morin M, Melo ER, Méndez UO, Martínez HG, Cortéz JY. In situ strained Inconel 718 superalloy studied by thermoelectric power technique. J Alloys Compd. 2009;467:572–7.

    Article  Google Scholar 

  10. Da Silva NJ, Grassi END, de Brito Simões J, de Araújo CJ. Dynamic mechanical analysis of a NiTi shape memory alloy: an experimental study. In: Proceedings of International Congress of Mechanical Engineering (COBEM). Nov 15–20, 2009. Gramado, RS.

  11. Torra V, Isalgue A, Lovey FC, Sade M. Shape memory alloys as an effective tool to damp oscillations: study of the fundamental parameters required to guarantee technological applications. J Therm Anal Calorim. 2015;119:1475–533.

    Article  CAS  Google Scholar 

  12. Chien C, Wu S-K, Chang S-H. Damping characteristics of Ti50Ni50−x Cu x (x = 0~30 at.%) shape memory alloys at a low frequency. Materials. 2014;7:4574–86.

    Article  Google Scholar 

  13. Cai W, Meng XL, Zhao LC. Recent development of TiNi-based shape memory alloys. Curr Opin Solid State Mater Sci. 2005;9:296–302.

    Article  CAS  Google Scholar 

  14. Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  15. Ueura T, Sakaguchi T, Igata N, Takeuchi S. Internal friction of hydrogenated Ti (Ni, Cu) shape memory alloys. Key Eng Mater. 2006;319:39–44.

    Article  CAS  Google Scholar 

  16. Matsuoka S. Relaxation phenomena in polymers. Munich: Hanser Publisher; 1992.

    Google Scholar 

  17. Dalir M, Bashour M. Applications of fractional calculus. Appl Math Sci. 2010;4(21):1021–32.

    Google Scholar 

  18. Alcoutlabi M, Martinez-Vega JJ. Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method: the relaxation spectrum H(τ). Polymer. 2003;44:7199–208.

    Article  CAS  Google Scholar 

  19. Reyes-Melo ME, Martínez-Vega JJ, Guerrero-Salazar CA, Ortiz-Méndez U. Mechanical and dielectric relaxation phenomena of poly(ethylene-2,6-napthalene dicarboxylate) by fractional calculus approach. J Appl Polym Sci. 2006;102:3354–68.

    Article  CAS  Google Scholar 

  20. Ngai KL. Relation between some secondary relaxations and the α-relaxations in glass-forming materials according to the coupling model. J Chem Phys. 1998;109(16):6982–94.

    Article  CAS  Google Scholar 

  21. López-Walle B, López-Cuellar E, Reyes-Melo E, Lomas-González O, de Castro WB. A smart polymer composite based on a NiTi ribbon and a magnetic hybrid material for actuators with multiphysic transduction. Actuators. 2015;4:301–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Reyes-Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Melo, M.E., Rentería-Baltiérrez, F.Y., López-Walle, B. et al. Application of fractional calculus to modeling the dynamic mechanical analysis of a NiTi SMA ribbon. J Therm Anal Calorim 126, 593–599 (2016). https://doi.org/10.1007/s10973-016-5552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5552-1

Keywords

Navigation