Skip to main content
Log in

Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High-density polyethylene (HDPE)/graphene nanocomposites were synthesized by in situ polymerization. Zriconocene was used as a catalyst and methylaluminoxane as a co-catalyst. The effect of graphene on the activity of the catalyst and on chain microstructure, crystallization kinetics, mechanical and thermal characteristics of HDPE was investigated. Both the thermal and mechanical properties of HDPE were enhanced. The catalyst showed a slight reduction in the activity. The molecular weight of the polymer was analyzed by gel permeation chromatography, and a significant increase in weight-average molecular weight (M W) of HDPE was observed in the presence of graphene. Isothermal crystallization kinetics was studied by differential scanning calorimetry. The crystallization rate was increased with the addition of graphene. Microcalorimetric analysis indicated a major decrease in the peak decomposition temperature as well as the total heat released for the HDPE/graphene nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chaudhry AU, Mittal V. High-density polyethylene nanocomposites using master batches of chlorinated polyethylene/graphene oxide. Polym Eng Sci. 2013;53:78–88. doi:10.1002/pen.23241.

    Article  CAS  Google Scholar 

  2. Bieligmeyer M, Taheri SM, German I, Boisson C, Probst C, Milius W, et al. Completely miscible polyethylene nanocomposites. J Am Chem Soc. 2012;. doi:10.1021/ja307297c.

    Google Scholar 

  3. Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, et al. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim. doi:10.1007/s10973-015-4596-y.

  4. Barbosa R, Alves TS, Araújo EM, Mélo TJA, Camino G, Fina A, et al. Flammability and morphology of HDPE/clay nanocomposites. J Therm Anal Calorim. 2013;115:627–34. doi:10.1007/s10973-013-3310-1.

    Article  Google Scholar 

  5. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  Google Scholar 

  6. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES. Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J. 2008;44:1346–57.

    Article  CAS  Google Scholar 

  7. Grigoriadou I, Paraskevopoulos KM, Karavasili M, Karagiannis G, Vasileiou A, Bikiaris D. HDPE/Cu-nanofiber nanocomposites with enhanced mechanical and UV stability properties. Compos Part B Eng. 2013;55:407–20.

    Article  CAS  Google Scholar 

  8. Zubair M, Jose J, Emwas AH, Al-Harthi MA. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites. Surf Interface Anal. 2014;46:630–9.

    Article  CAS  Google Scholar 

  9. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–30.

    Article  CAS  Google Scholar 

  10. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282–6.

    Article  CAS  Google Scholar 

  12. Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB. Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci. 2013;128:2630–7.

    Article  CAS  Google Scholar 

  13. Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, et al. Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer. 2011;52:1837–46.

    Article  CAS  Google Scholar 

  14. Chaudhry A, Mittal V. Masterbatch approach to generate HDPE/CPE/graphene nanocomposites. In: Mittal V, editor. Synth Tech Polym. Nanocomposites Weinheim, Germany: Wiley GmbH & Co. KGaA; 2014. doi:10.1002/9783527670307.

  15. Mittal V. In-situ synthesis of polymer nanocomposites. In: Mittal V, editor. In-Situ Synth Polym. Nanocomposites Weinheim, Germany: Wiley GmbH & Co. KGaA; 2011. p. 1–25. doi:10.1002/9783527640102.ch1.

  16. Zheng W, Lu X, Wong S. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci. 2004;91:2781–8.

    Article  CAS  Google Scholar 

  17. Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, et al. Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res. 2010;13:869–78.

    Article  Google Scholar 

  18. Park S, Yoon SW, Lee K-B, Kim DJ, Jung YH, Do Y, et al. Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol Rapid Commun. 2006;27:47–50.

  19. Stürzel M, Kempe F, Thomann Y, Mark S, Enders M, Mülhaupt R. Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules. 2012;45:6878–87.

    Article  Google Scholar 

  20. Fim FC, Guterres JM, Basso NRS, Galland GB. Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem. 2010;48:692–8.

    Article  CAS  Google Scholar 

  21. Shehzad F, Thomas SP, Al-Harthi MA. Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in situ polymerization. Thermochim Acta. 2014;589:226–34.

    Article  CAS  Google Scholar 

  22. Daud M, Shehzad F, Al-Harthi MA. Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym Bull. 2015;72:1233–45.

    Article  CAS  Google Scholar 

  23. Papageorgiou GZ, Palani A, Gilliopoulos D, Triantafyllidis KS, Bikiaris DN. Mechanical properties and crystallization of high-density polyethylene composites with mesostructured cellular silica foam. J Therm Anal Calorim. 2013;113:1651–65.

    Article  CAS  Google Scholar 

  24. Guimarães R, Stedile FC, dos Santos JH. Ethylene polymerization with catalyst systems based on supported metallocenes with varying steric hindrance. J Mol Catal A Chem. 2003;206:353–62.

    Article  Google Scholar 

  25. Cheng S, Chen X, Hsuan YG, Li CY. Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules. 2012;45:993–1000.

    Article  CAS  Google Scholar 

  26. Anantawaraskul S, Soares JBP. Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci. 2005;182:1–54.

    Article  CAS  Google Scholar 

  27. Anantawaraskul S, Soares JB, Wood-Adams PM, Monrabal B. Effect of molecular weight and average comonomer content on the crystallization analysis fractionation (Crystaf) of ethylene α-olefin copolymers. Polymer. 2003;44:2393–401.

    Article  CAS  Google Scholar 

  28. Han TK, Choi HK, Jeung DW, Ko YS, Woo SI. Control of molecular weight and molecular weight distribution in ethylene polymerization with metallocene catalysts. Macromol Chem Phys. 1995;196:2637–47.

    Article  CAS  Google Scholar 

  29. Choi B, Lee J, Lee S, Ko J-H, Lee K-S, Oh J, et al. Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol Rapid Commun. 2013;34:533–8.

    Article  CAS  Google Scholar 

  30. Yan D, Wang W-J, Zhu S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer. 1999;40:1737–44.

    Article  CAS  Google Scholar 

  31. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103.

    Article  CAS  Google Scholar 

  32. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    Article  CAS  Google Scholar 

  33. Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2013;40:6268–76. doi:10.1021/ma071025m.

    Article  Google Scholar 

  34. Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta. 2013;553:40–8.

    Article  CAS  Google Scholar 

  35. Xu J-Z, Liang Y-Y, Zhong G-J, Li H-L, Chen C, Li L-B, et al. Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J Phys Chem Lett. 2012;3:530–5.

    Article  CAS  Google Scholar 

  36. Deng S, Lin Z, Xu B, Qiu W, Liang K, Li W. Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites. J Therm Anal Calorim. 2014;118:197–203.

    Article  CAS  Google Scholar 

  37. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (A phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  38. Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys. 1993;31:1395–405.

    Article  CAS  Google Scholar 

  39. Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4695-9.

    Google Scholar 

  40. Sewda K, Maiti SN. Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym Bull. 2013;70:2657–74.

    Article  CAS  Google Scholar 

  41. Ran S, Chen C, Guo Z, Fang Z. Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci. 2014;131.

  42. Zhuo D, Wang R, Wu L, Guo Y, Ma L, Weng Z, et al. Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites. J Nanomater. 2013. doi:10.1155/2013/820901.

  43. Ran S, Guo Z, Han L, Fang Z. Effect of a lewis acid catalyst on the performance of HDPE/BFR/GNPs composites. Ind Eng Chem Res. 2014;53:4711–7. doi:10.1021/ie404302b.

Download references

Acknowledgment

The authors are thankful to the Deanship of research, King Fahd University of Petroleum and minerals for funding this work under project IN 131037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzad, F., Daud, M. & Al-Harthi, M.A. Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J Therm Anal Calorim 123, 1501–1511 (2016). https://doi.org/10.1007/s10973-015-5087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5087-x

Keywords

Navigation