Skip to main content
Log in

Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present report, physical and thermal characterizations of magnesium oxyhalide bismuth borate glasses in the composition range of \( x{\text{Mg}}X_{2} \left( {X = {\text{F}},\,{\text{Br}}} \right) \, \cdot \, \left( {30 - x} \right){\text{MgO }}\cdot \, 50{\text{B}}_{2} {\text{O}}_{3} \cdot \, 20{\text{Bi}}_{2} {\text{O}}_{3} \) (x = 0, 2, 5, 7 and 10) containing 2 mol% of V2O5 prepared by standard melt-quench technique have been discussed. The non-crystalline nature of prepared glasses has been identified through peak free X-ray diffraction profiles. Density (D), molar volume (V m) and oxygen packing density have been measured/calculated, and varying trends are discussed by relating with physical changes governed in prepared glass structures on increasing/changing the halogen (fluoride/bromide) ions. The differential thermal analysis (DTA) and thermogravimetry have been carried out in the temperature range of 200–900 °C. Glass transition temperature (T g) and melting temperature (T m) are determined from the DTA thermographs. The glass stability parameter, T g/T m is calculated from the obtained values of characteristic temperatures and a sudden decrease in stability at x = 5.0 is observed in both series which reflects that halide ions (F/Br) modify the glass structure at low concentrations (up to 5.0 mol%) and contribute to glass network formation at high concentrations (>5.0 mol%). Infrared absorption spectra have been recorded in the mid-IR range and evaluated to report the possible cause of band vibrations present in the spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kashif I, El-Maboud AA, Ratep A. Effect of Nd2O3 on structure and characterization of lead bismuth-borate glasses. Results Phys. 2014;4:1–5.

    Article  Google Scholar 

  2. Karthikeyan B, Mohan S. Structural, optical and glass transition studies on Nd3+-doped lead bismuth borate glasses. Phys B. 2003;334:298–302.

  3. Ahlawat NN, Agamkar P, Ahlawat N, Agarwal A, Monica R. Structural study of TM doped alkali bismuth borate glasses. Adv Mater Lett. 2013;4:71–3.

    Google Scholar 

  4. Khasa S, Dahiya MS, Agarwal A. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses. AIP Conf Proc. 2014;1591:796–8.

    Article  CAS  Google Scholar 

  5. Ardelean I, Cora S, Rusu D. EPR and FT-IR spectroscopic studies of Bi2O3–B2O3–CuO glasses. Phys B. 2008;403:3682–5.

    Article  CAS  Google Scholar 

  6. Khasa S, Dahiya MS, Ashima S, Agarwal A. Structural investigations of lithium vanadoxide bismo-borate glasses. J Integr Sci Technol. 2013;1:44–7.

    Google Scholar 

  7. Farouk H, Soliman AA, Farhan H, Kashif I, Sanad AM. Mössbauer, electrical, and magnetic studies of glass of the CaO–B2O3–Fe2O3–CaCl2 system. Can J Appl Spectrosc. 1996;41:135–8.

    CAS  Google Scholar 

  8. Doweidar H, El-Damrawi G, Abdelghani M. Structure and properties of CaF2–B2O3 glasses. J Mater Sci. 2012;47:4028–35.

    Article  CAS  Google Scholar 

  9. Khasa S, Dahiya MS, Agarwal A. Synthesis and characterization of vanadyl ion doped alkaline halide borate glasses. Int J Phys Math Sci. 2012;2(S1):104–8.

    Google Scholar 

  10. Khasa S, Seth VP, Gahlot PS, Agarwal A, Krishna RM, Gupta SK. Electron paramagnetic resonance, optical transmission spectra and DC conductivity studies of vanadyl-doped alkali halide borate glasses. Phys B. 2003;334(3):347–58.

    Article  CAS  Google Scholar 

  11. Khasa S, Dahiya MS, Agarwal A. FTIR studies of some vanadyl ion doped calcium oxychloride borate glasses. AIP Conf Proc. 2012;1536:671–2.

    Google Scholar 

  12. Khasa S, Dahiya MS, Agarwal A, Chand P. EPR, FTIR, thermal and electrical properties of VO2+ doped BaO·BaCl2·B2O3 glasses. J Mol Struct. 2015;1079:15–20.

    Article  CAS  Google Scholar 

  13. Dahiya MS, Khasa S, Agarwal A. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses. J Mol Struct. 2015;1086:172–8.

    Article  CAS  Google Scholar 

  14. Dahiya MS, Khasa S, Agarwal A. Physical, thermal, structural and optical absorption of vanadyl doped magnesium oxy-chloride bismo-borate glasses. J Asian Ceram Soc. 2015;3:206–11.

    Article  Google Scholar 

  15. Button DP, Tandon R, King C, Veléz MH, Tuller HL, Uhlmann DR. Insights into the structure of alkali borate glasses. J Non-Cryst Solids. 1982;49:129–42.

    Article  CAS  Google Scholar 

  16. Sulowska J, Waclawska I, Olejniczak Z. Effect of glass composition on the interactions between structural elements in Cu-containing silicate-phosphate glasses. J Therm Anal Calorim. 2014;116:51–9.

    Article  CAS  Google Scholar 

  17. Wers E, Oudadesse H. Thermal behavior and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.

    Article  CAS  Google Scholar 

  18. Sulowska J, Waclawska I, Szumera M. Effect of copper addition on glass transition of silicate–phosphate glasses. J Therm Anal Calorim. 2012;109:705–10.

    Article  CAS  Google Scholar 

  19. Mošner P, Vosejpková K, Koudelka L, Beneš L. Thermal studies of ZnO–B2O3–P2O5–TeO2 glasses. J Therm Anal Calorim. 2012;107:1129–35.

    Article  CAS  Google Scholar 

  20. Dalal S, Khasa S, Dahiya MS, Yadav A, Agarwal A, Dahiya S. Optical and thermal investigations on vanadyl doped zinc lithium borate glasses. 2000. doi:10.1016/j.jascer/2015.03.004.

  21. Delben JRJ, Delben AAST, Miazato K, Oliveira SL, Messaddeq Y. Thermal stability of fluorochloroindate glasses. J Therm Anal Calorim. 2004;75:637–42.

    Article  CAS  Google Scholar 

  22. Silva DV, Ribeiro CA, Crespi MS. Crystallization kinetic of fluoro-zirconate glasses by non-isothermal analysis. J Therm Anal Calorim. 2003;72:151–7.

    Article  CAS  Google Scholar 

  23. Zhu J, Jin H, Dong D, Qiang D, Ma F. Study on the stability of GaF3-based glasses by differential scanning calorimetry. J Therm Anal Calorim. 2001;66:479–86.

    Article  CAS  Google Scholar 

  24. Maraquesi AR, Delben JRJ, Delben AAST. Glass forming ability and thermal stability of oxyfluoride glasses. J Therm Anal Calorim. 2009;96:403–6.

    Article  CAS  Google Scholar 

  25. Das SS, Singh P. DSC studies on sodium phosphate glasses doped with chlorides of Cd, Co and Ag. J Therm Anal Calorim. 2004;78:731–8.

    Article  CAS  Google Scholar 

  26. Kiczenski TJ, Ma C, Hammarsten E, Wilkerson D, Affatigato M, Feller SA. J Non-Cryst Solids. 2000;272:57.

    Article  CAS  Google Scholar 

  27. Feller SA, Lower N, Affatigato M. Density as a probe of oxide glass structure. Phys Chem Glasses. 2001;42:240–6.

    CAS  Google Scholar 

  28. Samee MA, Awasthi AM, Shripathi T, Bale S, Srinivasu Ch, Rahman S. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions. J Alloys Compd. 2011;509:3183–9.

    Article  CAS  Google Scholar 

  29. Dietzel A. Glass structure and glass properties. Glasstech. 1968;22:41.

    Google Scholar 

  30. Araujo EB, Eiras JA, de Almeida EF, de Paiva JAC, Sombra ASB. Structure and nucleation mechanism of the iron lithium niobium phosphate glasses studied by infrared spectroscopy and DTA. Phys Chem Glasses. 1999;40:273.

  31. Sakka S, Mackenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145–62.

    Article  CAS  Google Scholar 

  32. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  33. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19:11.

    Article  Google Scholar 

  34. Subbalakshmi P, Veeraiah N. Study of CaO–WO3–P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J Non-Cryst Solids. 2002;298:89–98.

    Article  CAS  Google Scholar 

  35. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  36. Mitrovic N, Roth S, Eckert J. Kinetics of the glass transition and crystallization process of Fe72−x Nb x Al5Ga2P11C6B4 (x = 0, 2) metallic glasses. Appl Phys Lett. 2001;78:2145–7.

    Article  CAS  Google Scholar 

  37. Souri D. Investigation of glass transition temperature in (60−x)V2O5–40TeO2xNiO glasses at different heating rates. J Mater Sci. 2011;46(21):6998–7003.

    Article  CAS  Google Scholar 

  38. ElBatal FH, Marzouk SY, Nada N, Desouky SM. Gamma-ray interaction with copper-doped bismuth-borate glasses. Phys B. 2007;391:88–97.

    Article  CAS  Google Scholar 

  39. Giridhar A, Mahadevan S. The T g versus Z dependence of glasses of the Ge–In–Se system. J Non-Cryst Solids. 1992;151:245–52.

    Article  CAS  Google Scholar 

  40. Rabinal MK, Sangunni KS, Gopal ESR. Chemical ordering in Ge20Se80−x In x glasses. J Non-Cryst Solids. 1995;188:98–106.

    Article  CAS  Google Scholar 

  41. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    Article  CAS  Google Scholar 

  42. Singh L, Thakur V, Punia R, Kundu RS, Singh A. Structural and optical properties of barium titanate modified bismuth borate glasses. Solid State Sci. 2014;37:64–71.

    Article  CAS  Google Scholar 

  43. Baia L, Stefan R, Kiefer W, Popp J, Simon S. Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids. 2002;303:379–86.

    Article  CAS  Google Scholar 

  44. Pascuta P, Borodi G, Culea E. Structural investigations of bismuth borate glass ceramics containing gadolinium ions by X-ray diffraction and FTIR spectroscopy. J Mater Sci Mater Electron. 2009;20:360–5.

    Article  CAS  Google Scholar 

  45. Kamitsos EI, Karakassides MA, Chryssikos GD. Vibrational spectra of magnesium–sodium–borate glasses. 2. Raman and mid-infrared investigation of the network structure. J Phys Chem. 1987;91:1073–9.

    Article  CAS  Google Scholar 

  46. Mansour E. FTIR spectra of pseudo-binary sodium borate glasses containing TeO2. J Mol Struct. 2012;1014:1–6.

    Article  CAS  Google Scholar 

  47. Shaaban ER, Shapaan M, Saddeek YB. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J Phys Condens Matter. 2008;20:155108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by University Grant Commissions, New Delhi, under Major Research Project (F. No. 40-461/2011(SR)) and Department of Science and Technology, New Delhi, under INSPIRE Fellowship No. IF130355. Thermal measurement facilities were provided by Central Instrumentation Laboratory at Deenbandhu Chhotu Ram University of Science and Technology, Murthal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dahiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, M.S., Khasa, S. & Agarwal, A. Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions. J Therm Anal Calorim 123, 457–465 (2016). https://doi.org/10.1007/s10973-015-4913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4913-5

Keywords

Navigation