Skip to main content

Advertisement

Log in

Borate glasses for scientific and industrial applications: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Research in borate glasses has started as a scientific curiosity and as an aid to explain the structure of oxide glasses in general. This effort led to a better understanding of the structure and unique properties of borate glasses. Although silicate and borosilicate glasses satisfy the vast majority of scientific and industrial needs, there are certain circumstances where they are not satisfactory. Furthermore, borate glasses offer certain advantages over silicate glasses which are not well known, neither well explored. However, certain characteristics of borate glasses such as their affinity to water requires that they are well selected, designed, or developed to satisfy the specifications of a given application. This review aims to explore and report some of the key properties of binary borate glasses. It also provides certain guidelines for several applications where the scientific literature is discussed in connection with industrial experience and technological needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shelby JE (2015) Introduction to glass science and technology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Bobkova NM (2003) Thermal expansion of binary borate glasses and their structure. Glass Phys Chem 29:501–507

    Article  Google Scholar 

  3. Rachkovskaya GE, Zakharevich GB (2002) Vitrification, properties, and structure of lead-tellurite borate glasses. Glass Ceram 59:123–126

    Article  Google Scholar 

  4. Cheng Y, Xiao H, Guo W (2007) Influence of compositions on sealing temperature and properties of lead borate non-crystallizing sealing glasses. Mater Sci Eng, A 464:210–215

    Article  Google Scholar 

  5. Koudelka L, Mošner P, Zeyer M, Jäger C (2003) Lead borophosphate glasses doped with titanium dioxide. J Non-Cryst Solids 326:72–76

    Article  Google Scholar 

  6. Brochu M, Gauntt BD, Shah R, Loehman RE (2006) Comparison between micrometer-and nano-scale glass composites for sealing solid oxide fuel cells. J Am Ceram Soc 89:810–816

    Article  Google Scholar 

  7. Brow RK, Tallant DR, Crowder SV, Saha SK, Jain H, Mcintyre A, Day DE (1996) Advanced materials for aerospace and biomedical applications. Sandia Report, Albuquerque, pp 96–2772

    Google Scholar 

  8. Bowers B (2002) Discharge lighting brightens the night. Proc IEEE 90:1604–1607

    Article  Google Scholar 

  9. Laughton MA, Warne DF (eds) (2003) Electrical engineer’s reference book. Elsevier, Oxford

    Google Scholar 

  10. Linden D, Reddy T (2001) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  11. Sudworth J, Tilley AR (1985) Sodium sulfur battery. Chapman and Hall, London

    Google Scholar 

  12. Rahmane M, Lacovangelo C (2010) Materials for advanced sodium metal halide batteries, leadership summit. American Ceramic Society, Baltimore

    Google Scholar 

  13. Wikipedia (2011) Lithium battery. http://en.wikipedia.org/wiki/Lithium_battery. Accessed 11 June 2015

  14. Fusite Corporation (2011) Hermetic glass to metal battery seals booklet. http://www.emersonclimate.com/Documents/Battery.pdf. Accessed July 28 2011

  15. Brow RK, Tallant DR (1997) Structural design of sealing glasses. J Non-Cryst Solids 222:396–406

    Article  Google Scholar 

  16. Schaffer JP, Saxena A, Antolovich SD, Sanders TH Jr, Warner SB (1999) The science and design of engineering materials. McGraw-Hill International, New York

    Google Scholar 

  17. Brow RK and Watkins RD (1991) U.S. Patent No. 5,021,307. U.S. Patent and Trademark Office, Washington, DC

  18. Volf MB (1990) Technical approach to glass. Elsevier, Amsterdam

    Google Scholar 

  19. Pecht M, Fukuda Y, Rajagopal S (2004) The impact of lead-free legislation exemptions on the electronics industry. IEEE Trans Electron Packag Manuf 27:221–232

    Article  Google Scholar 

  20. Aitken BG, Bookbinder DC, Greene ME, Morena RM (1993) U.S. Patent No. 5,246,890. U.S. Patent and Trademark Office, Washington, DC

  21. Francis GL, Morena R (1994) US Patent No. 5,281,560. U.S. Patent and Trademark Office, Washington, DC

  22. Woods WG (1994) An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect 102(Suppl 7):5

    Article  Google Scholar 

  23. Terashima K, Tamura S, Kim SH, Yoko T (1997) Structure and nonlinear optical properties of lanthanide borate glasses. J Am Ceram Soc 80:2903–2909

    Article  Google Scholar 

  24. Yamane M (2000) Glasses for photonics. Cambridge University Press, Port Chester

    Book  Google Scholar 

  25. Harper CA (2001) Handbook of ceramics, glasses and diamonds. McGraw-Hill, New York

    Google Scholar 

  26. Qiu J, Tanaka N, Sugimoto N, Hirao K (1997) Faraday effect in Tb3+-containing borate, fluoride and fluorophosphates glasses. J Non-Cryst Solids 213&214:193–198

    Article  Google Scholar 

  27. Gan F (ed) (2006) Photonic glasses. World Scientific, River Edge

    Google Scholar 

  28. Nie W (1993) Optical nonlinearity: phenomena, applications, and materials. Adv Mater 5:520–545

    Article  Google Scholar 

  29. Deparis O, Mezzapesa FP, Corbari C, Kazansky PG, Sakaguchi K (2005) Origin and enhancement of the second-order non-linear optical susceptibility induced in bismuth borate glasses by thermal poling. J Non-Cryst Solids 351:2166–2177

    Article  Google Scholar 

  30. Nazabal V, Fargin E, Ferreira B, Le Flem G, Desbat B, Buffeteau T, Couzi M, Rodriguez V, Santran S, Canioni L, Sarger L (2001) Thermally poled new borate glasses for second harmonic generation. J Non-Cryst Solids 290:73–85

    Article  Google Scholar 

  31. Boyd RW, Fischer GL (2001) Nonlinear optical materials. In: Buschow KHJ et al (eds) Encyclopedia of materials: science and technology. Elsevier, New York

    Google Scholar 

  32. Myers RA, Mukherjee N, Brueck SRJ (1991) Large second-order nonlinearity in poled fused silica. Opt Lett 16:1732–1734

    Article  Google Scholar 

  33. Corbari C, Ajitdoss LC, Carvalho ICS, Deparis O, Mezzapesa FP, Kazansky PG, Sakaguchi K (2010) The problem of achieving high second-order nonlinearities in glasses: the role of electronic conductivity in poling of high index glasses. J Non-Cryst Solids 356:2742–2749

    Article  Google Scholar 

  34. Akselrod MS, Bøtter-Jensen L, McKeever SWS (2007) Optically stimulated luminescence and its use in medical dosimetry. Radiat Meas 41:S78–S99

    Article  Google Scholar 

  35. Yoshimura EM, Yukihara EG (2006) Optically stimulated luminescence: searching for new dosimetric materials. Nucl Instrum Methods Phys Res, Sect B 250:337–341

    Article  Google Scholar 

  36. Pisarska J (2009) Luminescence behavior of Dy3+ ions in lead borate glasses. Opt Mater 31:1784–1786

    Article  Google Scholar 

  37. Pisarski WA, Dominiak-Dzik G, Ryba-Romanowski W, Pisarska J (2008) Role of PbO substitution by PbF2 on structural behavior and luminescence of rare earth-doped lead borate glass. J Alloy Compd 451:220–222

    Article  Google Scholar 

  38. Pisarska J, Pisarski WA, Ryba-Romanowski W (2010) Laser spectroscopy of Nd3+ and Dy3+ ions in lead borate glasses. Opt Laser Technol 42:805–809

    Article  Google Scholar 

  39. Tanabe S, Kang J, Hanada T, Soga N (1998) Yellow/blue luminescences of Dy3+-doped borate glasses and their anomalous temperature variations. J Non-Cryst Solids 239:170–175

    Article  Google Scholar 

  40. Pisarska J, Lisiecki R, Ryba-Romanowski W, Goryczka T, Pisarski WA (2010) Unusual luminescence behavior of Dy3+-doped lead borate glass after heat treatment. Chem Phys Lett 489:198–201

    Article  Google Scholar 

  41. Tiefeng X, Feifei C, Shixun D, Qiuhua N, Xiang S, Xunsi W (2009) Third-order optical nonlinear characterizations of Bi2O3–B2O3–TiO2 ternary glasses. Phys B 404:2012–2015

    Article  Google Scholar 

  42. Chen Y, Huang Y, Huang M, Chen R, Luo Z (2005) Effect of Nd3+ on the spectroscopic properties of bismuth borate glasses. J Am Ceram Soc 88:19–23

    Article  Google Scholar 

  43. Chen Y, Huang Y, Huang M, Chen R, Luo Z (2004) Spectroscopic properties of Er3+ ions in bismuth borate glasses. Opt Mater 25:271–278

    Article  Google Scholar 

  44. Raju CN, Reddy CA, Sailaja S, Seo HJ, Reddy BS (2012) Judd-Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications. J Mater Sci 47:772–778. doi:10.1007/s10853-011-5853-5

    Article  Google Scholar 

  45. Pisarski WA, Pisarska J, Dominiak-Dzik G, Ryba-Romanowski W (2009) Transition metal (Cr3+) and rare earth (Eu3+, Dy 3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses. J Alloy Compd 484:45–49

    Article  Google Scholar 

  46. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  47. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Article  Google Scholar 

  48. Gu Y, Xiao W, Lu L, Huang W, Rahaman MN, Wang D (2011) Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution. J Mater Sci 46:47–54. doi:10.1007/s10853-010-4792-x

    Article  Google Scholar 

  49. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24:243–250

    Article  Google Scholar 

  50. Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY, Lam WM, Lu WW, Wang DP, Huang WH, Lin KL, Chang J (2010) Strontium borate glass: potential biomaterial for bone regeneration. J Royal Soc Interface 7:1025–1031

    Article  Google Scholar 

  51. Bi L, Rahaman MN, Day DE, Brown Z, Samujh C, Liu X, Mohammadkhah A, Dusevich V, Eick JD, Bonewald LF (2013) Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater 9:8015–8026

    Article  Google Scholar 

  52. Peddi L, Brow RK, Brown RF (2008) Bioactive borate glass coatings for titanium alloys. J Mater Sci Mater Med 19:3145–3152

    Article  Google Scholar 

  53. Brow RK, Saha SK, Goldstein JI (1993) Interfacial reactions between titanium and borate glass. In: MRS Proceedings, vol 314. Cambridge University Press, p 77

  54. Marion NW, Liang W, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ (2005) Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12:239–246

    Article  Google Scholar 

  55. Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ (2009) Sol–gel synthesis and structural characterisation of P2O5–B2O3–Na2O glasses for biomedical applications. J Mater Chem 19:150–158

    Article  Google Scholar 

  56. Bengisu M, Yilmaz E (2004) Chemical durability of alumina and selected glasses in simulated body fluid: effect of composition and surface abrasion. Adv Exp Med Biol 553:103–112

    Article  Google Scholar 

  57. Brown RF, Teitelbaum HK, Adams N, Brow RK (2002) In vitro assessment of a novel borate-based bioactive glass, MRS Spring Meeting, San Fransisco. http://mse.mst.edu/research/crbet. Accessed 12 June 2015

  58. Liu X, Xie Z, Zhang C, Pan H, Rahaman MN, Zhang X, Pan H, Rahaman MN, Zhang X, Fu Q, Huang W (2010) Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci Mater Med 21:575–582

    Article  Google Scholar 

  59. Xie Z, Liu X, Jia W, Zhang C, Huang W, Wang J (2009) Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Control Release 139:118–126

    Article  Google Scholar 

  60. Hum J, Boccaccini AR (2012) Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci Mater Med 23:2317–2333

    Article  Google Scholar 

  61. Wray P (2013) Wound healing: an update on Mo-Sci’s novel borate glass fibers. Am Ceram Soc Bull 92:30–35

    Google Scholar 

  62. Mo-Sci Corporation (2015) Bioactive glass. http://www.mo-sci.com/bioactive-glass/ Accessed 4 Sept 2015

  63. Kessler S, Fechner JH, Seneschal K, Zimmer J (2008) Glass compositions as an antimicrobial additive for dental materials. U.S. Patent No. 20,080,153,068. U.S. Patent and Trademark Office, Washington, DC

  64. Han X, Du M, Ma Y, Day DE (2008) Evaluation of hydroxyapatite microspheres made from a borate glass to separate protein mixtures. J Mater Sci 43:5618–5625. doi:10.1007/s10853-008-2756-1

    Article  Google Scholar 

  65. Ezz-Eldin FM (2001) Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes. Nucl Instr Methods Phys Res B 183:285–300

    Article  Google Scholar 

  66. Remizov MB, Bogdanov AF, Vdovkina II, Biryukova MA (2005) Synthesis and use of borates of polyatomic alcohols for the preparation of liquid high-level wastes for ınclusion into borophosphate glass. At Energ 99:716–722

    Article  Google Scholar 

  67. Erdogan C, Bengisu M, Erenturk SA (2014) Chemical durability and structural analysis of PbO–B2O3 glasses and testing for simulated radioactive wastes. J Nucl Mater 445:154–164

    Article  Google Scholar 

  68. Singh N, Singh KJ, Singh K, Singh H (2004) Comparative study of lead borate and bismuth lead borate glass systems as gamma radiation shielding materials. Nucl Instr Methods Phys Res B 225:305–309

    Article  Google Scholar 

  69. ElBatal FH, Marzouk MA (2011) Gamma rays interaction with bismuth borate glasses doped by transition metal ions. J Mater Sci 46:5140–5152. doi:10.1007/s10853-011-5445-4

    Article  Google Scholar 

  70. Kaur S, Singh KJ (2013) Comparative study of lead borate and lead silicate glass systems doped with aluminum oxide as gamma-ray shielding materials. Int J Innov Technol Explor Eng 2:172–175

    Google Scholar 

  71. Ruengsri S (2014) Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Sci Technol Nucl Install 2014:1–6

    Article  Google Scholar 

  72. Nascimento ML, Souza LA, Ferreira EB, Zanotto ED (2005) Can glass stability parameters infer glass forming ability? J Non-Cryst Solids 351:3296–3308

    Article  Google Scholar 

  73. Feltz A (1993) Amorphous inorganic materials and glasses. VCH, Weinheim

    Google Scholar 

  74. Tanaka H (2005) Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J Non-Cryst Solids 351:678–690

    Article  Google Scholar 

  75. Cabral AA, Fredericci C, Zanotto ED (1997) A test of the Hruby parameter to estimate glass-forming ability. J Non-Cryst Solids 219:182–186

    Article  Google Scholar 

  76. Hudon P, Baker DR (2002) The nature of phase separation in binary oxide melts and glasses. I. Silicate systems. J Non-Cryst Solids 303:299–345

    Article  Google Scholar 

  77. Hudon P, Baker DR (2002) The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism. J Non-Cryst Solids 303:346–353

    Article  Google Scholar 

  78. Hudon P, Baker DR (2002) The nature of phase separation in binary oxide melts and glasses. III. Borate and germanate systems. J Non-Cryst Solids 303:354–371

    Article  Google Scholar 

  79. Bengisu M (2001) Engineering ceramics. Springer, Berlin

    Book  Google Scholar 

  80. Shaw RR, Uhlmann DR (1971) Effect of phase separation on the properties of simple glasses II. Elastic properties. J Non-Cryst Solids 5:237–263

    Article  Google Scholar 

  81. Rawson H (1967) Inorganic glass forming systems. Academic Press, London

    Google Scholar 

  82. Levin EM, McDaniel CL (1962) The system Bi2O–B2O3. J Am Ceram Soc 45:355–360

    Article  Google Scholar 

  83. Levin EM, McMurdie HF (1949) The system BaO–B2O3. J Res Natl Bur Stand (US) 42:131–137

    Article  Google Scholar 

  84. Levin EM (1966) Phase equilibria in the system niobium pentoxide-boric acid. J Res Natl Bur Stand (US) 70A:11–16

    Article  Google Scholar 

  85. Levin EM, Robbins CR, Waring JL (1961) Immiscibility and the system lanthanum oxide–boric oxide. J Am Ceram Soc 44:87–91

    Article  Google Scholar 

  86. Golubkov VV, Stolyarova VL (2011) Kinetics of early stages of phase separation in glasses of the PbO–B2O3 system. Glass Phys Chem 37:252–257

    Article  Google Scholar 

  87. Shaw RR, Breedis JF (1972) Secondary phase separation in lead borate glasses. J Am Ceram Soc 55:422–425

    Article  Google Scholar 

  88. Zhu D, Ray CS, Luo F, Zhou W, Day DE (2008) Melting and phase-separation of lead borate glasses in low gravity drop shaft. Ceram Int 34:417–420

    Article  Google Scholar 

  89. Craievich AF, Zanotto EE, James PF (1983) Kinetics of sub-liquidus phase separation in silicate and borate glasses. A review. Bull Mineral 106:169–184

    Google Scholar 

  90. Shaw RR, Uhlmann DR (1968) Subliquidus immiscibility in binary alkali borates. J Am Ceram Soc 51:377–382

    Article  Google Scholar 

  91. Charles RJ, Wagstaff FE (1968) Metastable immiscibility in the B2O3–SiO2 system. J Am Ceram Soc 51:16–20

    Article  Google Scholar 

  92. Porai-Koshits EA, Golubkov VV, Titov AP (1978) On the fluctuation structure of vitreous boron oxide and two-component alkali borate glasses. In: Pye LD, Frechette VD, Kreidl NJ (eds) Borate glasses: structure, properties, and applications, vol 12., Materials Science ResearchPlenum, New York, pp 183–199

    Chapter  Google Scholar 

  93. Shelby JE (1983) Thermal expansion of alkali borate glasses. J Am Ceram Soc 66:225–227

    Article  Google Scholar 

  94. Vogel W (1985) Chemistry of glass. The American Ceramic Society, Westerville

    Google Scholar 

  95. Du WF, Kuraoka K, Akai T, Yazawa T (2000) Study of kinetics of the phase separation in sodium borate glasses. J Mater Sci 35:3913–3921. doi:10.1023/A:1004845817600

    Article  Google Scholar 

  96. Inoue S, Makishima A, Inoue H, Soga K, Konishi T, Asano T, Ishii Y, Koyama M (1997) In situ observation of phase separation of a barium borate melt in a stable immiscibility region under microgravity. J Am Ceram Soc 80:2413–2417

    Article  Google Scholar 

  97. Inoue S, Wada K, Nukui A, Yamane M, Shibata S, Yasumori A, Yano T, Makishima A, Inoue H, Uo M, Fujimori Y (1995) Estimation of phase separation rates of PbO–B2O3 melts. J Mater Res 10:1561–1564

    Article  Google Scholar 

  98. Brow RK, Watkins RD (1992) Sealing glasses for titanium and titanium alloys. U.S. Patent No. 5,104,738. U.S. Patent and Trademark Office, Washington, DC

  99. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308

    Article  Google Scholar 

  100. Bengisu M, Brow RK, Yilmaz E, Moguš-Milanković A, Reis ST (2006) Aluminoborate and aluminoborosilicate glasses with high chemical durability and the effect of P2O5 additions on the properties. J Non-Cryst Solids 352:3668–3676

    Article  Google Scholar 

  101. Takaishi T, Jin J, Uchino T, Yoko T (2000) Structural study of PbO–B2O3 glasses by X-ray diffraction and 11B MAS NMR techniques. J Am Ceram Soc 83:2543–2548

    Article  Google Scholar 

  102. Erdogan C, Akyil Erenturk S, Bengisu M (2010) Vitrification process for the immobilization of radioactive waste. Poster presentation, X. National Congress of Nuclear Science and Technology, Muğla, Turkey

  103. Priven AI (2000) Calculation of the viscosity of glass-forming melts: V. Binary borate systems. Glass Phys Chem 26:541–558

    Article  Google Scholar 

  104. Shelby JE (2003) Diffusion and solubility of water in alkali borate melts. Phys Chem Glasses Eur J Glass Sci Tech Part B 44:106–112

    Google Scholar 

  105. Shelby JE (2008) A limited review of water diffusivity and solubility in glasses and melts. J Am Ceram Soc 91:703–708

    Article  Google Scholar 

  106. Zhang T, Fahrenholtz WG, Reis ST, Brow RK (2008) Borate volatility from SOFC sealing glasses. J Am Ceram Soc 91:2564–2569

    Article  Google Scholar 

  107. Gunther C, Hofer G, Kleinlein W (1997) The stability of the sealing glass AF 45 in H2/H2O and O2/N2 atmospheres. In: Proceedings 5th international symposium solid oxide fuel cells, vol 97, pp 746–756

  108. Snyder MJ, Mesko MG, Shelby JE (2006) Volatilization of boron from E-glass melts. J Non-Cryst Solids 352:669–673

    Article  Google Scholar 

  109. Khanna A (2000) Effects of melt annealing on the mechanical and optical properties of lead borate glasses. Phys Chem Glasses-Eur J Glass Sci Tech Part B 41:330–332

    Google Scholar 

  110. Khanna A, Sawhney KJS, Tiwari MK, Bhardwaj S, Awasthi AM (2003) Effects of melt ageing on the density, elastic modulus and glass transition temperature of bismuth borate glasses. J Phys 15:6659–6670

    Google Scholar 

  111. Anzai Y, Terashima K, Kimura S (1993) Physical properties of molten lithium tetraborate. J Crys Growth 134:235–239

    Article  Google Scholar 

  112. Huang WC, Jain H, Kamitsos EI, Patsis AP (1993) Anomalous expansion of sodium triborate melt and its effect on glass properties. J Non-Cryst Solids 162:107–117

    Article  Google Scholar 

  113. Puttlitz KJ, Stalter KA (2004) Handbook of lead-free solder technology for microelectronic assemblies. CRC Press, New York

    Book  Google Scholar 

  114. Wong-Ng W, Roth RS, Vanderah T, McMurdie HF (2001) Phase equilibria and crystallography of ceramic oxides. J Res Natl Inst Stand Technol 106:1097–1134

    Article  Google Scholar 

  115. Taylor WJ, Lessar JF, Halperin LE, Kraska RE (1998) Terminal comprised of a thin layer of titanium clad over niobium or platinum, platinum-iridium alloys or of pure titanium. US Patent No. 5,821,011. US Patent and Trademark Office, Washington, DC

  116. Frysz CA, Harvey AHI, Prinzbach JM (2004) Mismatched compression glass-to-metal seal. US Patent No. 6,759,163. US Patent and Trademark Office, Washington, DC

  117. Esashi M, Nakano A, Shoji S, Hebiguchi H (1990) Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glass. Sens Actuators A21-A23:931–934

    Article  Google Scholar 

  118. Frieser RG (1975) Electrocomponent science and technology, vol 2. Gordon and Breach, New York

    Google Scholar 

  119. Taylor WJ, Lessar JF, Weiss DJ (1992) Battery with weldable feedthrough. US Patent No. 5,104,755. US Patent and Trademark Office, Washington, DC

  120. Kodama M, Kojima S (2002) Anharmonicity and fragility in lithium borate glasses. J Thermal Anal Calorim 69:961–970

    Article  Google Scholar 

  121. Lower NP, McRae JL, Feller HA, Betzen AR, Kapoor S, Affatigato M, Feller SA (2001) Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions. J Non-Cryst Solids 293:669–675

    Article  Google Scholar 

  122. Klyuev VP, Pevzner BZ (2002) The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses. Glass Phys Chem 28:207–220

    Article  Google Scholar 

  123. Shelby JE (1974) Properties and structure of B2O3–GeO2 glasses. J Appl Phys 45:5272–5277

    Article  Google Scholar 

  124. Saddeek YB (2004) Structural analysis of alkali borate glasses. Phys B 344:163–175

    Article  Google Scholar 

  125. Velez MH, Tuller HL, Uhlmann DR (1982) Chemical durability of lithium borate glasses. J Non-Cryst Solids 49:351–362

    Article  Google Scholar 

  126. Inaba S, Fujino S, Morinaga K (1999) Young’s modulus and compositional parameters of oxide glasses. J Am Ceram Soc 82:3501–3507

    Article  Google Scholar 

  127. Gowda VV, Anavekar RV, Rao KJ (2005) Elastic properties of fast ion conducting lithium based borate glasses. J Non-Cryst Solids 351:3421–3429

    Article  Google Scholar 

  128. Gao Y (2005) Dependence of the mixed alkali effect on temperature and total alkali oxide content in y[xLi2O. (1 − x)Na2O]. (1 − y)B2O3 glasses. J Solid State Chem 178:3376–3380

    Article  Google Scholar 

  129. Donald IW, Metcalfe BL, Bradley DJ, Hill MJC, McGrath JL, Bye AD (1994) The preparation and properties of some lithium borate based glasses. J Mater Sci 29:6379–6396. doi:10.1007/BF00353994

    Article  Google Scholar 

  130. Doweidar H, El-Damrawi GM, Moustafa YM, Ramadan RM (2005) Density of mixed alkali borate glasses: a structural analysis. Phys B 362:123–132

    Article  Google Scholar 

  131. Levin EM, Block S (1957) Structural interpretation of immiscibility in oxide systems: I, analysis and calculation of immiscibility. J Am Ceram Soc 40:95–106

    Article  Google Scholar 

  132. Chryssikos GD, Liu L, Varsamis CP, Kamitsos EI (1998) Dielectric and structural investigation of alkali triborate glasses. J Non-Cryst Solids 235:761–765

    Article  Google Scholar 

  133. Ratai E, Janssen M, Eckert H (1998) Spatial distributions and chemical environments of cations in single-and mixed alkali borate glasses: evidence from solid state NMR. Solid State Ionics 105:25–37

    Article  Google Scholar 

  134. Yun YH, Bray PJ (1981) B11 nuclear magnetic resonance studies of Li2O·B2O3 glasses of high Li2O content. J Non-Cryst Solids 44:227–237

    Article  Google Scholar 

  135. Goktas AA, Neilson GF, Weinberg MC (1992) Crystallization of lithium borate glasses. J Mater Sci 27:24–28. doi:10.1007/BF02403639

    Article  Google Scholar 

  136. Royle M, MacKenzie J, Taylor J, Sharma M, Feller S (1994) Densities, glass transition temperatures, and structural models resulting from extremely modified caesium and rubidium borate glasses. J Non-Cryst Solids 177:242–248

    Article  Google Scholar 

  137. Janssen M, Eckert H (2000) 11 B 23 Na Rotational echo double resonance NMR: a new approach for studying the spatial cation distribution in sodium borate glasses. Solid State Ionics 136:1007–1014

    Article  Google Scholar 

  138. Kodama M (1991) Ultrasonic velocity in sodium borate glasses. J Mater Sci 26:4048–4053. doi:10.1007/BF00553487

    Article  Google Scholar 

  139. Ahoussou AP, Rogez J, Kone A (2006) Enthalpy of mixing in 0.8 [xB2O3–(1 − x) P2O5]–0.2 Na2O glasses at 298K. Thermochim Acta 441:96–100

    Article  Google Scholar 

  140. Klyuev VP, Pevzner BZ (2003) Thermal expansion and glass transition temperature of calcium borate and calcium aluminoborate glasses. Glass Phys Chem 29:127–136

    Article  Google Scholar 

  141. Bajaj A, Khanna A, Kulkarni NK, Aggarwal SK (2009) Effects of doping trivalent ions in bismuth borate glasses. J Am Ceram Soc 92:1036–1041

    Article  Google Scholar 

  142. Wu J, Stebbins JF (2014) Cation field strength effects on boron coordination in binary borate glasses. J Am Ceram Soc 97:2794–2801

    Article  Google Scholar 

  143. Angel PW, Cooper AR (1997) Effect of melting time and temperature on properties of a sodium borate glass. J Non-Cryst Solids 221:70–77

    Article  Google Scholar 

  144. Pevzner BZ, Klyuev VP (2004) Manifestation of the mixed-cation effect in dilatometric properties of RO (R2O)·2B2O3 borate glasses upon replacement of Na2O by BaO, Na2O by MgO, and BaO by MgO. Glass Phys Chem 30:506–514

    Article  Google Scholar 

  145. Becker P (2003) Thermal and optical properties of glasses of the system Bi2O3–B2O3. Cryst Res Technol 38:74–82

    Article  Google Scholar 

  146. Cormier L, Majérus O, Neuville DR, Calas G (2006) Temperature-induced structural modifications between alkali borate glasses and melts. J Am Ceram Soc 89:13–19

    Article  Google Scholar 

  147. Manupriya, Thind KS, Sharma G, Rajendran V, Singh K, Gayathri Devi AV, Aravindan S (2006) Structural and acoustic investigations of calcium borate glasses. Phys Status Solidi A 203:2356–2364

    Article  Google Scholar 

  148. Mutluer T, Timucin M (1975) Phase equilibria in the system MgO–B2O3. J Am Ceram Soc 58:196–197

    Article  Google Scholar 

  149. Kapoor S, George HB, Betzen A, Affatigato M, Feller S (2000) Physical properties of barium borate glasses determined over a wide range of compositions. J Non-Cryst Solids 270:215–222

    Article  Google Scholar 

  150. Koudelka L, Mosner P (2000) Borophosphate glasses of the ZnO–B2O3–P2O5 system. Mater Lett 42:194–199

    Article  Google Scholar 

  151. Hayashi A, Nakai M, Tatsumisago M, Minami T, Himei Y, Miura Y, Katada M (2002) Structural investigation of SnO–B2O3 glasses by solid-state NMR and X-ray photoelectron spectroscopy. J Non-Cryst Solids 306:227–237

    Article  Google Scholar 

  152. Cheng Y, Xiao H, Guo W, Guo W (2007) Structure and crystallization kinetics of PbO–B2O3 glasses. Ceram Int 33:1341–1347

    Article  Google Scholar 

  153. Zahra AM, Zahra CY, Piriou B (1993) DSC and Raman studies of lead borate and lead silicate glasses. J Non-Cryst Solids 155:45–55

    Article  Google Scholar 

  154. Metwalli E (2003) Copper redox behavior, structure and properties of copper lead borate glasses. J Non-Cryst Solids 317:221–230

    Article  Google Scholar 

  155. Bergeron CG, Russell CK, Friedberg AL (1963) Thermal analysis of lead borate glasses during crystallization. J Am Ceram Soc 46:246

    Article  Google Scholar 

  156. Saddeek YB, Gaafar MS (2009) Physical and structural properties of some bismuth borate glasses. Mater Chem Phys 115:280–286

    Article  Google Scholar 

  157. Yawale SP, Pakade SV (1993) DC conductivity and hopping mechanism in Bi2O3-B2O3 glasses. J Mater Sci 28:5451–5455. doi:10.1007/BF00367814

    Article  Google Scholar 

  158. Bajaj A, Khanna A, Chen B, Longstaffe JG, Zwanziger UW, Zwanziger JW, Gomez Y, González F (2009) Structural investigation of bismuth borate glasses and crystalline phases. J Non-Cryst Solids 355:45–53

    Article  Google Scholar 

  159. El-Damrawi G, El-Egili K (2001) Characterization of novel CeO2–B2O3 glasses, structure and properties. Phys B 299:180–186

    Article  Google Scholar 

  160. Hill GC, Holman JS (1995) Chemistry in context. Nelson Thornes, Cheltenham

    Google Scholar 

  161. Dell WJ, Bray PJ, Xiao SZ (1983) 11B NMR studies and structural modeling of Na2O–B2O3–SiO2 glasses of high soda content. J Non-Cryst Solids 58:1–16

    Article  Google Scholar 

  162. Du LS, Stebbins JF (2005) Network connectivity in aluminoborosilicate glasses: a high-resolution 11B, 27 Al and 17O NMR study. J Non-Cryst Solids 351:3508–3520

    Article  Google Scholar 

  163. Bray PJ, Feller SA, Jellison GE, Yun YH (1980) B 10 NMR studies of the structure of borate glasses. J Non-Cryst Solids 38:93–98

    Article  Google Scholar 

  164. Bray PF (1978) NMR studies of borates. In: Bye L, Frechette V, Kreidle N (eds) Materials science research 12, Proceedings of the conference on boron in glass and glass-ceramics, Plenum, New York, pp 321–351

  165. Hayashi A, Nakai M, Tatsumisago M, Minami T (2002) Structure and properties of glasses in the system Li2O–SnO–B2O3. CR Chim 5:751–757

    Article  Google Scholar 

  166. Tomozawa M (1999) A source of the immiscibility controversy of borate and borosilicate glass systems. J Am Ceram Soc 82:206–208

    Article  Google Scholar 

  167. Mazurin OV, Porai-Koshits EA (eds) (1984) Phase separation in glass. North Holland, Amsterdam

    Google Scholar 

  168. Kasper J, Feller S, Sumcad G, Boyd DC (1984) New sodium borate glasses. J Am Ceram Soc 67:c71–c72

    Article  Google Scholar 

  169. Sycheva GA, Grishchenko LV (2008) Specific features of the glass formation in the R2O–B2O3, R2O–SiO2, and R2O–B2O3–SiO2 (R = Rb, Cs) systems. Glass Phys Chem 34:260–264

    Article  Google Scholar 

  170. Strnad Z (1986) Glass ceramic materials. Elsevier, Amsterdam

    Google Scholar 

  171. Ohta Y, Morinaga K, Yanagase T (1982) Liquid–liquid immiscibility in several binary borate systems. J Ceram Soc Jpn 90:511

    Google Scholar 

  172. Kim SS, Sanders TH (2003) Thermodynamic assessment of the miscibility gaps and the metastable liquidi in the B2O3–RO systems (R = Mg, Ca, Sr, and Ba). J Am Ceram Soc 86:1947–1952

    Article  Google Scholar 

  173. Crichton SN, Tomozawa M (1997) Prediction of phase separation in binary borate glasses. J Non-Cryst Solids 215:244–251

    Article  Google Scholar 

  174. Levin EM (1970) Phase diagrams. In: Alper AM (ed) Liquid immiscibility in oxide systems, vol III. Academic Press, New York, pp 143–236

    Google Scholar 

  175. Clemens K, Yoshiyagawa M, Tomozawa M (1981) Liquid–liquid immiscibility in barium oxide-boron oxide. J Am Ceram Soc 64:C91

    Article  Google Scholar 

  176. Meera BN, Ramakrishna J (1993) Raman spectral studies of borate glasses. J Non-Cryst Solids 159:1–21

    Article  Google Scholar 

  177. Dimitriev Y, Kashchieva E (1975) Immiscibility in the TeO2–B2O3 system. J Mater Sci 10:1419–1424. doi:10.1007/BF00540832

    Article  Google Scholar 

  178. Liedberg DJ, Ruderer CG, Bergeron CG (1965) Evidence of metastable immiscibility in the system PbO–B2O3. J Am Ceram Soc 48:440

    Article  Google Scholar 

  179. Podlesny J, Weinberg MC, Neilson GF, Chen A (1993) Experimental determination of the binodal temperature in the lead borate system. J Mater Sci 28:1663–1666. doi:10.1007/BF00363365

    Article  Google Scholar 

  180. Rabinovich EM (1976) Lead in glasses. J Mater Sci 11:925–948. doi:10.1007/BF00542311

    Article  Google Scholar 

  181. Koudelka L, Mošner P, Zeyer M, Jäger C (2005) Structure and properties of mixed sodium–lead borophosphate glasses. J Non-Cryst Solids 351:1039–1045

    Article  Google Scholar 

  182. Reis STD, Pontuschka WM, Yang JB, Faria DLA (2003) Properties and structural features of iron doped BABAL glasses. Mater Res 6:389–394

    Article  Google Scholar 

  183. Youssef NH, Belkhiria MS, Videau JJ, Amara MB (2000) Investigation of the physico-chemical properties of calcium borophosphate glasses. Effect of the substitution of sodium for calcium. Mater Lett 44:269–274

    Article  Google Scholar 

  184. Day DE, Wu Z, Ray CS, Hrma P (1998) Chemically durable iron phosphate glass wasteforms. J Non-Cryst Solids 241:1–12

    Article  Google Scholar 

  185. Abdel-Baki M, Abdel-Wahaba FA, Radia A, El-Diasty F (2007) Factors affecting optical dispersion in borate glass systems. J Phys Chem Solids 68:1457–1470

    Article  Google Scholar 

  186. Ahoussou AP, Rogez J, Kone A (2007) Thermodynamical miscibility in 0.8 [xB2O3–(1 − x) P2O5]–0.2 K2O glasses. J Non-Cryst Solids 353:271–275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bengisu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengisu, M. Borate glasses for scientific and industrial applications: a review. J Mater Sci 51, 2199–2242 (2016). https://doi.org/10.1007/s10853-015-9537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9537-4

Keywords

Navigation