Skip to main content
Log in

Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the effective use of polyethylene-grafted maleic anhydride (PE-g-MA) copolymer as a compatibilizer in high-density polyethylene composites containing 10–50 mass% hemp fibers was evaluated through mechanical and thermal properties measurements. The results revealed a significant reinforcement on the tensile strength of the composites as a consequence of the incorporation of the compatibilizer. Less pronounced effects were found on the elongation at break and impact strength of the composites. The notable enhancement of tensile strength on the compatibilized composites was related to the improved adhesion of hemp with the matrix in the presence of PE-g-MA, which was revealed through scanning electron microscopy observations. Furthermore, Fourier transform infrared spectroscopy analyses suggested that covalent bonding occurs between the fibers and the matrix in the highest PE-g-MA concentrations. Differential scanning calorimetry experiments revealed that the presence of compatibilizer increases the crystallinity of the composites. Thermogravimetry studies revealed that for low compatibilizer concentrations the thermal stability of the composites is further reduced, while for the highest concentration, when bonding occurs, it is enhanced. The biodegradation studies of all the composites revealed that the incorporation of compatibilizer enhances the stability of the composites, especially in the higher concentrations, and reduces their final residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bikiaris DN. Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym Degrad Stabil. 2013;98(9):1908–28. doi:10.1016/j.polymdegradstab.2013.05.016.

    Article  CAS  Google Scholar 

  2. Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–74. doi:10.1016/S0079-6700(98)00018-5.

    Article  CAS  Google Scholar 

  3. Sam ST, Ismail H, Ahmad Z. Soil burial of polyethylene-g-(maleic anhydride) compatibilised LLDPE/soya powder blends. Polym Plast Technol. 2011;50(8):851–61. doi:10.1080/03602559.2011.551977.

    Article  CAS  Google Scholar 

  4. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN. Green composites prepared from aliphatic polyesters and bast fibers. Ind Crop Prod. doi:10.1016/j.indcrop.2014.08.034.

  5. Shahzad A. Hemp fiber and its composites—a review. J Compos Mater. 2012;46(8):973–86. doi:10.1177/0021998311413623.

    Article  CAS  Google Scholar 

  6. La Rosa AD, Recca G, Summerscales J, Latteri A, Cozzo G, Cicala G. Bio-based versus traditional polymer composites. A life cycle assessment perspective. J Clean Prod. 2014;74:135–44. doi:10.1016/j.jclepro.2014.03.017.

    Article  Google Scholar 

  7. Ahmad F, Choi HS, Park MK. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng. 2014. doi:10.1002/mame.201400089.

    Google Scholar 

  8. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Reinders M, Bikiaris DN. Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym Compos. 2014. doi:10.1002/pc.23194.

    Google Scholar 

  9. Han HC, Gong XL. One-step green treatment of hemp fiber used in polypropylene composites. Polym Compos. 2014;. doi:10.1002/pc.23191.

    Google Scholar 

  10. Baghaei B, Skrifvars M, Rissanen M, Ramamoorthy SK. Mechanical and thermal characterization of compression moulded polylactic acid natural fiber composites reinforced with hemp and lyocell fibers. J Appl Polym Sci. 2014;131(15). doi:10.1002/app.40534.

  11. Etaati A, Pather S, Fang Z, Wang H. The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Compos Part B Eng. 2014;62:19–28. doi:10.1016/j.compositesb.2014.02.011.

    Article  CAS  Google Scholar 

  12. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN. Green composites prepared from aliphatic polyesters and bast fibers. Ind Crop Prod. 2014. doi:10.1016/j.indcrop.2014.08.034.

  13. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Reinders M, Bikiaris DN. Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym Compos. 2014. doi:10.1002/pc.23194.

  14. Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64. doi:10.1016/S0266-3538(03)00096-4.

    Article  CAS  Google Scholar 

  15. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, et al. Review: Current international research into cellulosic fibres and composites. J Mater Sci. 2001;36(9):2107–31. doi:10.1023/A:1017512029696.

    Article  CAS  Google Scholar 

  16. Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351–63. doi:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X1.

    Article  CAS  Google Scholar 

  17. Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E. Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol. 2006;66(13):2218–30. doi:10.1016/j.compscitech.2005.12.006.

    Article  CAS  Google Scholar 

  18. Lu N, Oza S. Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos Part B Eng. 2013;44(1):484–90. doi:10.1016/j.compositesb.2012.03.024.

    Article  CAS  Google Scholar 

  19. Durmus A, Kasgoz A, Macosko CW. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer. 2007;48(15):4492–502. doi:10.1016/j.polymer.2007.05.074.

    Article  CAS  Google Scholar 

  20. Sánchez-Valdes S, Méndez-Nonell J, Medellín-Rodríguez FJ, Ramírez-Vargas E, Martínez-Colunga JG, Soto-Valdez H, et al. Effect of PEgMA/amine silane compatibilizer on clay dispersion of polyethylene-clay nanocomposites. Polym Bull. 2009;63(6):921–33. doi:10.1007/s00289-009-0170-8.

    Article  Google Scholar 

  21. Varela C, Rosales C, Perera R, Matos M, Poirier T, Blunda J, et al. Functionalized polypropylenes in the compatibilization and dispersion of clay nanocomposites. Polym Compos. 2006;27(4):451–60. doi:10.1002/pc.20179.

    Article  CAS  Google Scholar 

  22. López-Quintanilla ML, Sánchez-Valdés S, Ramos de Valle LF, Guedea Miranda R. Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MA content. Polym Bull. 2006;57(3):385–93. doi:10.1007/s00289-006-0555-x.

    Article  Google Scholar 

  23. Qiu W, Endo T, Hirotsu T. A novel technique for preparing of maleic anhydride grafted polyolefins. Eur Polym J. 2005;41(9):1979–84. doi:10.1016/j.eurpolymj.2005.03.016.

    Article  CAS  Google Scholar 

  24. Sailaja RRN, Chanda M. Use of maleic anhydride–grafted polyethylene as compatibilizer for HDPE–tapioca starch blends: effects on mechanical properties. J Appl Polym Sci. 2001;80(6):863–72. doi:10.1002/1097-4628(20010509)80:6<863:AID-APP1164>3.0.CO;2-R.

    Article  CAS  Google Scholar 

  25. Bikiaris D, Panayiotou C. LDPE/starch blends compatibilized with PE-g-MA copolymers. J Appl Polym Sci. 1998;70(8):1503–21

    Article  CAS  Google Scholar 

  26. Gassan J, Bledzki AK. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos Part A Appl Sci. 1997;28(12):1001–5. doi:10.1016/S1359-835X(97)00042-0.

    Article  Google Scholar 

  27. Felix JM, Gatenholm P. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci. 1991;42(3):609–20. doi:10.1002/app.1991.070420307.

    Article  CAS  Google Scholar 

  28. Zhao X, Li RKY, Bai S-L. Mechanical properties of sisal fiber reinforced high density polyethylene composites: effect of fiber content, interfacial compatibilization, and manufacturing process. Compos Part A Appl Sci. 2014;65:169–74. doi:10.1016/j.compositesa.2014.06.017.

    Article  CAS  Google Scholar 

  29. Willats WT, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001;47(1–2):9–27. doi:10.1023/A:1010662911148.

    Article  CAS  Google Scholar 

  30. Pickering KL, Sawpan MA, Jayaraman J, Fernyhough A. Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Compos Part A Appl Sci. 2011;42(9):1148–56. doi:10.1016/j.compositesa.2011.04.020.

    Article  Google Scholar 

  31. Kim H-S, Lee B-H, Choi S-W, Kim S, Kim H-J. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A Appl Sci. 2007;38(6):1473–82. doi:10.1016/j.compositesa.2007.01.004.

    Article  Google Scholar 

  32. Wunderlich B, Jin Y, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93. doi:10.1016/S0040-6031(94)85214-6.

    Article  CAS  Google Scholar 

  33. Borysiak S. Influence of cellulose polymorphs on the polypropylene crystallization. J Therm Anal Calorim. 2013;113(1):281–9. doi:10.1007/s10973-013-3109-0.

    Article  CAS  Google Scholar 

  34. Yang H-S, Gardner D, Kim H-J. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim. 2009;98(2):553–8. doi:10.1007/s10973-009-0324-9.

    Article  CAS  Google Scholar 

  35. Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng. 2011;42(4):856–73. doi:10.1016/j.compositesb.2011.01.010.

    Article  Google Scholar 

  36. Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002;84(12):2222–34. doi:10.1002/app.10460.

    Article  CAS  Google Scholar 

  37. Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stabil. 2005;89(2):327–35. doi:10.1016/j.polymdegradstab.2005.01.016.

    Article  CAS  Google Scholar 

  38. Krimm S, Liang CY, Sutherland GBBM. Infrared spectra of high polymers. II. Polyethylene. J Chem Phys. 1956;25(3):549–62.

    Article  CAS  Google Scholar 

  39. Krimm S. Infrared spectra of high polymers Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science. Berlin: Springer; 1960. p. 51–172.

    Book  Google Scholar 

  40. Coates J. Interpretation of infrared spectra. A practical approach. Encyclopedia of analytical chemistry. New York: Wiley; 2006.

    Google Scholar 

  41. Snyder RG, Maroncelli M, Strauss HL, Hallmark VM. Temperature and phase behavior of infrared intensities: the poly(methylene) chain. J Phys Chem. 1986;90(22):5623–30. doi:10.1021/j100280a030.

    Article  CAS  Google Scholar 

  42. Akovali G, Atalay A. Comparison of crystallinities of high density polyethylene determined by different techniques. Polym Test. 1997;16(2):165–71. doi:10.1016/s0142-9418(96)00037-2.

    Article  CAS  Google Scholar 

  43. Hagemann H, Snyder RG, Peacock AJ, Mandelkern L. Quantitative infared methods for the measurement of crystallinity and its temperature-dependence—polyethylene. Macromolecules. 1989;22(9):3600–6. doi:10.1021/ma00199a017.

    Article  CAS  Google Scholar 

  44. Snyder RG. Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. J Chem Phys. 1967;47(4):1316–60.

    Article  CAS  Google Scholar 

  45. Ibrahim A, Wahit M, Yussuf A. Effect of fiber reinforcement on mechanical and thermal properties of poly(ɛ-caprolactone)/poly(lactic acid) blend composites. Fibers Polym. 2014;15(3):574–82. doi:10.1007/s12221-014-0574-4.

    Article  CAS  Google Scholar 

  46. Spoljaric S, Genovese A, Shanks RA. Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci. 2009;40(6–7):791–9. doi:10.1016/j.compositesa.2009.03.011.

    Article  Google Scholar 

  47. Baghaei B, Skrifvars M, Berglin L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos Part A Appl Sci. 2013;50:93–101. doi:10.1016/j.compositesa.2013.03.012.

    Article  CAS  Google Scholar 

  48. Ahmad EEM, Luyt AS. Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polym Compos. 2012;33(6):1025–32. doi:10.1002/pc.22236.

    Article  CAS  Google Scholar 

  49. Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M. Composites of poly(L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci. 2007;105(1):255–68. doi:10.1002/app.26090.

    Article  CAS  Google Scholar 

  50. Sanchez-Garcia MD, Gimenez E, Lagaron JM. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym. 2008;71(2):235–44. doi:10.1016/j.carbpol.2007.05.041.

    Article  CAS  Google Scholar 

  51. Song Y, Liu J, Chen S, Zheng Y, Ruan S, Bin Y. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J Polym Environ. 2013;21(4):1117–27. doi:10.1007/s10924-013-0569-z.

    Article  CAS  Google Scholar 

  52. Ramezani Kakroodi A, Kazemi Y, Rodrigue D. Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: effect of ground tire rubber addition. Compos Part B Eng. 2013;51:337–44. doi:10.1016/j.compositesb.2013.03.032.

    Article  CAS  Google Scholar 

  53. Carmona V, de Campos A, Marconcini J, Mattoso L. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim. 2014;115(1):153–60. doi:10.1007/s10973-013-3259-0.

    Article  CAS  Google Scholar 

  54. Yang H-S, Kiziltas A, Gardner D. Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim. 2013;113(2):673–82. doi:10.1007/s10973-012-2770-z.

    Article  CAS  Google Scholar 

  55. Beltrami LVR, Bandeira JAV, Scienza LC, Zattera AJ. Biodegradable composites: Morphological, chemical, thermal, and mechanical properties of composites of poly(hydroxybutyrate-co-hydroxyvalerate) with curaua fibers after exposure to simulated soil. J Appl Polym Sci. 2014;131(17). doi:10.1002/app.40712.

  56. Pang MM, Pun MY, Ishak ZAM. Thermal, mechanical, and morphological characterization of biobased thermoplastic starch from agricultural waste/polypropylene blends. Polym Eng Sci. 2014;54(6):1357–65. doi:10.1002/pen.23684.

    Article  CAS  Google Scholar 

  57. Sebestyén Z, May Z, Réczey K, Jakab E. The effect of alkaline pretreatment on the thermal decomposition of hemp. J Therm Anal Calorim. 2011;105(3):1061–9. doi:10.1007/s10973-010-1056-6.

    Article  Google Scholar 

  58. Araújo JR, Waldman WR, De Paoli MA. Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stabil. 2008;93(10):1770–5. doi:10.1016/j.polymdegradstab.2008.07.021.

    Article  Google Scholar 

  59. Lee JM, Mohd Ishak ZA, Mat R, Law TT, Law TT, Ahmad Thirmizir MZ. Mechanical, thermal and water absorption properties of kenaf-fiber-based polypropylene and poly(butylene succinate) composites. J Polym Environ. 2013;21(1):293–302. doi:10.1007/s10924-012-0516-4.

    Article  CAS  Google Scholar 

  60. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene − clay systems. J Phys Chem B. 2007;111(44):12685–92. doi:10.1021/jp0759168.

    Article  CAS  Google Scholar 

  61. Roumeli E, Pavlidou E, Avgeropoulos A, Vourlias G, Bikiaris DN, Chrissafis K. Factors controlling the enhanced mechanical and thermal properties of nanodiamond reinforced cross-linked high density polyethylene. J Phys Chem B. 2014. doi:10.1021/jp504531f.

    Google Scholar 

  62. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK. Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci. 2011;119(3):1619–26. doi:10.1002/app.32826.

    Article  CAS  Google Scholar 

  63. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A Appl Sci. 2003;34(3):253–66. doi:10.1016/S1359-835X(02)00185-9.

    Article  Google Scholar 

  64. Elkhaoulani A, Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Design. 2013;49:203–8. doi:10.1016/j.matdes.2013.01.063.

    Article  CAS  Google Scholar 

  65. Abdul Wahab MK, Ismail H, Othman N. Compatibilization effects of PE-g-MA on mechanical, thermal and swelling properties of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polym Plast Technol. 2012;51(3):298–303. doi:10.1080/03602559.2011.639331.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Greek National Competitiveness and Entrepreneurship Programme (National Strategic Reference Framework 2007–2013) and the European Regional Development Fund under the Project: New Lightweight and Nanotechnology Enhanced Bio-composites from Lignocellulosic Materials, No. 12CHN322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Bikiaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumeli, E., Terzopoulou, Z., Pavlidou, E. et al. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim 121, 93–105 (2015). https://doi.org/10.1007/s10973-015-4596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4596-y

Keywords

Navigation