Skip to main content
Log in

Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caglar B, Çırak Ç, Tabak A, Afsin B, Eren E. Covalent grafting of pyridine-2-methanol into kaolinite layers. J Mol Struct. 2013;1032:12–22.

    Article  CAS  Google Scholar 

  2. Matusik J, Scholtzova E, Tunega D. Influence of synthesis condition on the formation of a kaolintie-methanol complex and simulation its vibrational spectra. Clay Clay Miner. 2012;60:227–39.

    Article  CAS  Google Scholar 

  3. Caglar B. Structural characterization of kaolinite–nicotinamide intercalation composite. J Mol Struct. 2012;1020:48–55.

    Article  CAS  Google Scholar 

  4. Letaief S, Leclercq J, Liu Y, Detellier C. Single kaolinite nanometer layers prepared by an in situ polymerization–exfoliation process in the presence of ionic liquids. Langmuir. 2011;27:15248–54.

    Article  CAS  Google Scholar 

  5. Cheng H, Liu Q, Zhang J, Yang J, Frost RL. Delamination of kaolinite–potassium acetate intercalates by ball-milling. J Colloid Interface Sci. 2010;348:355–9.

    Article  CAS  Google Scholar 

  6. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.

    Article  Google Scholar 

  7. Letaief S, Detellier C. Functionalization of the interlayer surfaces of kaolinite by alkylammonium groups from ionic liquids. Clay Clay Miner. 2009;57:638–48.

    Article  CAS  Google Scholar 

  8. Letaief S, Detellier C. Clay-polymer nanocomposite material from the delamination of kaolinite in the presence of sodium polyacrylate. Langmuir. 2009;25:10975–9.

    Article  CAS  Google Scholar 

  9. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  10. Frost RL, Horváth E, Makó É, Kristóf J, Cseh T. The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide. J Colloid Interface Sci. 2003;265:386–95.

    Article  CAS  Google Scholar 

  11. Frost RL, Horváth E, Makó É, Kristóf J. Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing. J Colloid Interface Sci. 2004;270:337–46.

    Article  CAS  Google Scholar 

  12. Gardolinski JEFC, Lagaly G. Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination. Clay Miner. 2005;40:547–56.

    Article  CAS  Google Scholar 

  13. Jia X, Li Y, Zhang B, Cheng Q, Zhang S. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Mater Res Bull. 2008;43:611–7.

    Article  CAS  Google Scholar 

  14. Franco F, Pérez-Maqueda LA, Pérez-Rodr´ıguez JL. The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochim Acta. 2003;404:71–9.

    Article  CAS  Google Scholar 

  15. Franco F, Pérez-Maqueda LA, Pérez-Rodríguez JL. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci. 2004;274:107–17.

    Article  CAS  Google Scholar 

  16. Franco F, Cecila JA, Pérez-Maqueda LA, Pérez-Rodríguez JL, Gomes CSF. Particle-size reduction of dickite by ultrasound treatments: effect on the structure, shape and particle-size distribution. Appl Clay Sci. 2007;35:119–27.

    Article  CAS  Google Scholar 

  17. Churchman GJ, Whitton JS, Claridge GGC, Theng BKG. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner. 1984;32:241–8.

    Article  CAS  Google Scholar 

  18. Joussein E, Petit S, Delvaux B. Behavior of halloysite clay under formamide treatment. Appl Clay Sci. 2007;35:17–24.

    Article  CAS  Google Scholar 

  19. Costanzo PM, Giese RF. Ordered halloysite: dimethylsulfoxide intercalate. Clays Clay Miner. 1986;34:105–7.

    Article  CAS  Google Scholar 

  20. Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS. Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci. 2009;338:474–9.

    Article  CAS  Google Scholar 

  21. Frost RL, Kristof J, Horvath E, Kloprogge JT. Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 k. J Colloid Interface Sci. 2000;226:318–27.

    Article  CAS  Google Scholar 

  22. Luca V, Thomson S. Intercalation and polymerisation of aniline within a tubular aluminosilicate. J Mater Chem. 2000;10:2121–6.

    CAS  Google Scholar 

  23. Horváth E, Kristóf J, Frost R, Rédey Á, Vágvölgyi V, Cseh T. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. J Therm Anal Calorim. 2003;71:707–14.

    Article  Google Scholar 

  24. Benazzouz BK, Zaoui A. Thermal behaviour and superheating temperature of kaolinite from molecular dynamics. Appl Clay Sci. 2012;58:44–51.

    Article  CAS  Google Scholar 

  25. Cheng H, Liu Q, Yang J, Du X, Frost RL. Influencing factors on kaolinite–potassium acetate intercalation complexes. Appl Clay Sci. 2010;50:476–80.

    Article  CAS  Google Scholar 

  26. Cheng H, Liu Q, Yang J, Ma S, Frost RL. The thermal behavior of kaolinite intercalation complexes-a review. Thermochim Acta. 2012;545:1–13.

    Article  CAS  Google Scholar 

  27. Ahamad T, Alshehri SM. TG-FTIR-MS (evolved gas analysis) of bidi tobacco powder during combustion and pyrolysis. J Hazard Mater. 2012;199–200:200–8.

    Article  Google Scholar 

  28. Madarász J, Brăileanu A, Crişan M, Pokol G. Comprehensive evolved gas analysis (ega) of amorphous precursors for s-doped titania by in situ TG-FTIR and TG/DTA-MS in air: part 2 Precursor from thiourea and titanium(iv)-n-butoxide. J Anal Appl Pyrol. 2009;85:549–56.

    Article  Google Scholar 

  29. Madarász J, Varga PP, Pokol G. Evolved gas analyses (TG/DTA-MS and TG-FTIR) on dehydration and pyrolysis of magnesium nitrate hexahydrate in air and nitrogen. J Anal Appl Pyrol. 2007;79:475–8.

    Article  Google Scholar 

  30. Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329–36.

    Article  Google Scholar 

  31. Kaljuvee T, Keelman M, Trikkel A, Petkova V. TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples. J Therm Anal Calorim. 2013;113:1063–71.

    Article  CAS  Google Scholar 

  32. Cheng H, Liu Q, Zhang S, Wang S, Frost R. Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim. 2014;116:887–94.

    Article  CAS  Google Scholar 

  33. Cheng H, Liu Q, Liu J, Sun B, Kang Y, Frost R. TG-MS-FTIR (evolved gas analysis) of kaolinite–urea intercalation complex. J Therm Anal Calorim. 2014;116:195–203.

    Article  CAS  Google Scholar 

  34. Fischer M, Wohlfahrt S, Saraji-Bozorgzad M, Matuschek G, Post E, Denner T, Streibel T, Zimmermann R. Thermal analysis/evolved gas analysis using single photon ionization. J Therm Anal Calorim. 2013;113:1667–73.

    Article  CAS  Google Scholar 

  35. Arockiasamy A, Toghiani H, Oglesby D, Horstemeyer MF, Bouvard JL, King R. TG-DSC-FTIR-MS study of gaseous compounds evolved during thermal decomposition of styrene-butadiene rubber. J Therm Anal Calorim. 2013;111:535–42.

    Article  CAS  Google Scholar 

  36. Bednarek P, Szafran M. Thermal decomposition of monosaccharides derivatives applied in ceramic gelcasting process investigated by the coupled DTA/TG/MS analysis. J Therm Anal Calorim. 2012;109:773–82.

    Article  CAS  Google Scholar 

  37. Cheng H, Yang J, Frost R, Liu Q, Zhang Z. Thermal analysis and infrared emission spectroscopic study of kaolinite–potassium acetate intercalate complex. J Therm Anal Calorim. 2011;103:507–13.

    Article  CAS  Google Scholar 

  38. Zhang B, Li Y, Pan X, Jia X, Wang X. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization. J Phys Chem Solids. 2007;68:135–42.

    CAS  Google Scholar 

  39. Franco F, Ruiz Cruz MD. Factors influencing the intercalation degree (‘reactivity’) of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine. Clay Miner. 2004;39:193–205.

    Article  CAS  Google Scholar 

  40. Deng Y, White GN, Dixon JB. Effect of structural stress on the intercalation rate of kaolinite. J Colloid Interface Sci. 2002;250:379–93.

    Article  CAS  Google Scholar 

  41. Frost RL, Kristof J, Paroz GN, Kloprogge JT. Role of water in the intercalation of kaolinite with hydrazine. J Colloid Interface Sci. 1998;208:216–25.

    Article  CAS  Google Scholar 

  42. Hinckley DN. Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clay Clay Miner. 1963;11:229–35.

    Article  Google Scholar 

  43. Frost RL, Kristof J, Paroz GN, Kloprogge JT. Molecular structure of dimethyl sulfoxide intercalated kaolinites. J Phys Chem B. 1998;102:8519–32.

    CAS  Google Scholar 

  44. Frost RL, Kristof J, Tran TH. Kinetics of deintercalation of potassium acetate from kaolinite; a raman spectroscopic study. Clay Miner. 1998;33:605–17.

    Article  CAS  Google Scholar 

  45. Wiewióra A, Brindley GW. Potassium acetate intercalation in kaolinites and its removal: Effect of material characteristics. In: Heller L, editor. Proceedings of the International Clay Conference Tokyo: Israel University Press, Jerusalem; 1969. p. 723–33.

  46. Wada K. Lattice expansion of kaolin minerals by treatment with potassium acetate. Am Mineral. 1961;46:78–91.

    CAS  Google Scholar 

  47. Frost RL, Kristof J, Kloprogge JT, Horvath E. Rehydration of potassium acetate-intercalated kaolinite at 298 k. Langmuir. 2000;16:5402–8.

    Article  Google Scholar 

  48. Cheng H, Liu Q, Cui X, Zhang Q, Zhang Z, Frost RL. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. J Colloid Interface Sci. 2012;376:47–56.

    Article  CAS  Google Scholar 

  49. Kristof J, Frost RL, Felinger A, Mink J. Ftir spectroscopic study of intercalated kaolinite. J Mol Struct. 1997;410–411:119–22.

    Google Scholar 

  50. Yamuna A, Devanarayanan S, Lalithambika M. Phase-pure mullite from kaolinite. J Am Ceram Soc. 2002;85:1409–13.

    Article  CAS  Google Scholar 

  51. Mellouk S, Cherifi S, Sassi M, Marouf-Khelifa K, Bengueddach A, Schott J, Khelifa A. Intercalation of halloysite from djebel debagh (algeria) and adsorption of copper ions. Appl Clay Sci. 2009;44:230–6.

    Article  CAS  Google Scholar 

  52. Kristóf J, Mink J, Horváth E, Gábor M. Intercalation study of clay minerals by fourier transform infrared spectrometry. Vib Spectrosc. 1993;5:61–7.

  53. Knopp JA, Linnell WS, Child WC. The thermodynamics of the thermal decomposition of acetic acid in the liquid phase. J Phys Chem. 1962;66:1513–6.

    CAS  Google Scholar 

  54. Nguyen MT, Sengupta D, Raspoet G, Vanquickenborne LG. Theoretical study of the thermal decomposition of acetic acid: decarboxylation versus dehydration. J Phys Chem. 1995;99:11883–8.

    CAS  Google Scholar 

  55. Mackie JC, Doolan KR. High-temperature kinetics of thermal decomposition of acetic acid and its products. Int J Chem Kinet. 1984;16:525–41.

    Article  CAS  Google Scholar 

  56. Makó É, Rutkai G, Kristóf T. Simulation-assisted evidence for the existence of two stable kaolinite/potassium acetate intercalate complexes. J Colloid Interface Sci. 2010;349:442–5.

  57. Cheng H, Liu Q, Yang J, Zhang J, Frost RL. Thermal analysis and infrared emission spectroscopic study of halloysite-potassium acetate intercalation compound. Thermochim Acta. 2010;511:124–8.

    Article  CAS  Google Scholar 

  58. Cheng H, Liu Q, Yang J, Zhang J, Frost RL, Du X. Infrared spectroscopic study of halloysite-potassium acetate intercalation complex. J Mol Struct. 2011;990:21–5.

    Article  CAS  Google Scholar 

  59. Frost RL, Kristof J, Mako E, Kloprogge JT. Modification of the hydroxyl surface in potassium–acetate-intercalated kaolinite between 25 and 300 °C. Langmuir. 2000;16:7421–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51034006) and the Open Research Project of State Key Laboratory for Coal Resources and Safe Mining, China University of Mining &Technology (SKLCRSM11KFB06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinfu Liu or Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Li, K., Liu, Q. et al. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis. J Therm Anal Calorim 117, 1231–1239 (2014). https://doi.org/10.1007/s10973-014-3934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3934-9

Keywords

Navigation