Skip to main content
Log in

Thermal analysis/evolved gas analysis using single photon ionization

Mass spectrometry for the investigation of tobacco

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A simultaneous thermogravimetry/differential scanning calorimetry device (STA) was coupled to single photon ionization time of flight mass spectrometry (SPI-TOFMS) for evolved gas analysis (EGA). Thermal resolution with thermogravimetric signals (TG/DTG) is delivered by STA. On-line coupled EGA with SPI-TOFMS retains the thermal information from the STA and substantiates these with correlating mass spectra. The application of vacuum ultraviolet (VUV)-photons (8–12 eV) for soft ionization, allows almost fragment-free ionization. Thus, it becomes possible to interpret mass spectra of complex matrices, like natural products evolving simultaneously several molecules, without an additional separation step. The STA–SPI-TOFMS on-line coupling offers the possibility to track subset mass traces during one STA run. Focusing on material-depended mass traces, differentiation of organic matrices is obvious. In this work two types of research cigarettes, 3R4F and CM6 were used. While the 3R4F cigarette is composed of a blend of different tobacco sorts and different curing methods, the CM6 research cigarette consists of pure flue cured tobacco. The advantages of coupling on-line chemical analysis methods to thermal analysis (TA) are in the context of the achieved thermo-molecular signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raemakers KGH, Bart JCJ. Applications of simultaneous thermogravimetry–mass spectrometry in polymer analysis. Thermochim Acta. 1997;295(1–2):1–58. doi:10.1016/s0040-6031(97)00097-x.

    Article  Google Scholar 

  2. Chiu J. Polymer characterization by coupled thermogravimetry–gas chromatography. Anal Chem. 1968;40(10):1516–20. doi:10.1021/ac60266a037.

    Article  CAS  Google Scholar 

  3. Fujii T. A new method for thermal analysis ion-attachment mass spectrometry (IAMS). J Therm Anal Calorim. 2012;110(1):17–25. doi:10.1007/s10973-011-2165-6.

    Article  CAS  Google Scholar 

  4. Kaisersberger E, Post E. Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochim Acta. 1997;295(1–2):73–93. doi:10.1016/s0040-6031(97)00099-3.

    Article  CAS  Google Scholar 

  5. Várhegyi G, Czégény Z, Jakab E, McAdam K, Liu C. Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments. J Anal Appl Pyrol. 2009;86(2):310–22. doi:10.1016/j.jaap.2009.08.008.

    Article  Google Scholar 

  6. Kaisersberger E, Post E. Applications for skimmer coupling systems, combining simultaneous thermal analysers with mass spectrometers. Thermochim Acta. 1998;324(1–2):197–201. doi:10.1016/s0040-6031(98)00536-x.

    Article  Google Scholar 

  7. Tsugoshi T, Ito N, Nagaoka T, Watari K. Evolved gas analysis with skimmer interface and ion attachment mass spectrometry for burnout monitoring of organic additives in ceramic processing. Talanta. 2006;70(1):186–9. doi:10.1016/j.talanta.2006.01.035.

    Article  CAS  Google Scholar 

  8. Lindinger W, Hirber J, Paretzke H. An ion/molecule-reaction mass spectrometer used for on-line trace gas analysis. Int J Mass Spectrom Ion Processes. 1993;129:79–88. doi:10.1016/0168-1176(93)87031-m.

    Article  CAS  Google Scholar 

  9. Cao L, Muhlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, et al. Resonance-enhanced multiphoton ionization and VUV-single photon ionization as soft and selective laser ionization methods for on-line time-of-flight mass spectrometry: investigation of the pyrolysis of typical organic contaminants in the steel recycling process. Anal Chem. 2003;75(21):5639–45. doi:10.1021/ac0349025.

    Article  CAS  Google Scholar 

  10. Arii T, Otake S. Study on thermal decomposition of polymers by evolved gas analysis using photoionization mass spectrometry (EGA-PIMS). J Therm Anal Calorim. 2008;91(2):419–26. doi:10.1007/s10973-007-8416-x.

    Article  CAS  Google Scholar 

  11. Adam T, Ferge T, Mitschke S, Streibel T, Baker RR, Zimmermann R. Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single-photon ionisation–time-of-flight mass spectrometry and advanced statistical methods. Anal Bioanal Chem. 2005;381(2):487–99. doi:10.1007/s00216-004-2935-0.

    Article  CAS  Google Scholar 

  12. Streibel T, Mitschke S, Adam T, Weh J, Zimmermann R. Thermal desorption/pyrolysis coupled with photo ionisation time-of-flight mass spectrometry for the analysis and discrimination of pure tobacco samples. J Anal Appl Pyrol. 2007;79(1–2):24–32. doi:10.1016/j.jaap.2006.12.017.

    Article  CAS  Google Scholar 

  13. Saraji-Bozorgzad M, Geissler R, Streibel T, Muhlberger F, Sklorz M, Kaisersberger E, et al. Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: a tool to investigate the chemical signature of thermal decomposition of polymeric materials. Anal Chem. 2008;80(9):3393–403. doi:10.1021/ac702599y.

    Article  CAS  Google Scholar 

  14. Geissler R, Saraji-Bozorgzad MR, Gröger T, Fendt A, Streibel T, Sklorz M, et al. Single photon ionization orthogonal acceleration time-of-flight mass spectrometry and resonance enhanced multiphoton ionization time-of-flight mass spectrometry for evolved gas analysis in thermogravimetry: comparative analysis of crude oils. Anal Chem. 2009;81(15):6038–48. doi:10.1021/ac900216y.

    Article  CAS  Google Scholar 

  15. Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000;19(2):65–107. doi:10.1002/(sici)1098-2787(2000)19:2<65:aid-mas1>3.0.co;2-e.

    Article  CAS  Google Scholar 

  16. Peedin GF. Tobacco: production, chemistry, and technology—flue-cured tobacco. Malden: Blackwell Science; 1999:104–42.

  17. Palmer GK. Tobacco: production, chemistry, and technology—light air-cured tobacco. Oxford: Blackwell Science; 1999:143.

  18. Gilchrist SN. Tobacco: production, chemistry, and technology—oriental tobacco. Oxford: Blackwell Science; 1999:154.

  19. Saraji-Bozorgzad MR, Eschner M, Groeger TM, Streibel T, Geissler R, Kaisersberger E, et al. Highly resolved online organic-chemical speciation of evolved gases from thermal analysis devices by cryogenically modulated fast gas chromatography coupled to single photon ionization mass spectrometry. Anal Chem. 2010;82(23):9644–53. doi:10.1021/ac100745h.

    Article  CAS  Google Scholar 

  20. Halket JM, Schulten H-R. Rapid characterization of tobacco by combined direct pyrolysis-field ionization mass spectrometry and pyrolysis-gas chromatography–mass spectrometry. J Anal Appl Pyrol. 1985;8:547–60. doi:10.1016/0165-2370(85)80051-6.

    Article  CAS  Google Scholar 

  21. Fenner RA L-HJ, Lephardt JO, Teng DM. Application of Fourier transform infra-red evolved gas analysis (FT-IR-EGA) to the study of tobacco curing. Beiträge Tabakforschung Intl. 1988;14(2):85–91.

  22. Baker RR. A review of pyrolysis studies to unravel reaction steps in burning tobacco. J Anal Appl Pyrol. 1987;11:555–73. doi:10.1016/0165-2370(87)85054-4.

    Article  CAS  Google Scholar 

  23. Schlotzhauer WS, Chortyk OT. Recent advances in studies on the pyrosynthesis of cigarette smoke constituents. J Anal Appl Pyrol. 1987;12(3–4):193–222. doi:10.1016/0165-2370(87)85002-7.

    Article  CAS  Google Scholar 

  24. Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68(2):153–207. doi:10.1021/cr60252a002.

    Article  CAS  Google Scholar 

  25. Schulten H-R. Relevance of analytical pyrolysis studies to biomass conversion. J Anal Appl Pyrol. 1984;6(3):251–72. doi:10.1016/0165-2370(84)80021-2.

    Article  CAS  Google Scholar 

  26. Evans RJ, Milne TA, Soltys MN, Schulten H-R. Mass spectrometric behavior of levoglucosan under different ionization conditions and implications for studies of cellulose pyrolysis. J Anal Appl Pyrol. 1984;6(3):273–83.

    Article  CAS  Google Scholar 

  27. Brown AL, Dayton DC, Nimlos MR, Daily JW. Characterization of biomass pyrolysis vapors with molecular beam, single photon ionization time-of-flight mass spectrometry. Chemosphere. 2001;42(5–7):663–9. doi:10.1016/S0045-6535(00)00240-X.

    Article  CAS  Google Scholar 

  28. Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol. 1997;40–41:171–86. doi:10.1016/s0165-2370(97)00046-6.

    Article  Google Scholar 

  29. Haider K, Schulten H-R. Pyrolysis field ionization mass spectrometry of lignins, soil humic compounds and whole soil. J Anal Appl Pyrol. 1985;8:317–31. doi:10.1016/0165-2370(85)80034-6.

    Article  CAS  Google Scholar 

  30. Seeman JI, Fournier JA, Paine JB, Waymack BE. The form of nicotine in tobacco. Thermal transfer of nicotine and nicotine acid salts to nicotine in the gas phase. J Agric Food Chem. 1999;47(12):5133–45. doi:10.1021/jf990409b.

    Article  CAS  Google Scholar 

  31. Lopez-Avila V, Cooley J, Urdahl R, Thevis M. Determination of stimulants using gas chromatography/high-resolution time-of-flight mass spectrometry and a soft ionization source. Rapid Commun Mass Spectrom. 2012;26(23):2714–24. doi:10.1002/rcm.6398.

    Article  CAS  Google Scholar 

  32. Scheijen, A. M, Boer, B-D, Boon, B. et al. Evaluation of a tobacco fractionation procedure using pyrolysis mass spectrometry combined with multivariate analysis, vol 5. Bonn, Allemagne: Verband der Cigarettenindustrie; 1989.

  33. Streibel T, Geißler R, Saraji-Bozorgzad M, Sklorz M, Kaisersberger E, Denner T, et al. Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim. 2009;96(3):795–804. doi:10.1007/s10973-009-0035-2.

    Article  CAS  Google Scholar 

  34. Cutzach I, Chatonnet P, Henry R, Dubourdieu D. Identification of volatile compounds with a “Toasty” aroma in heated oak used in barrel making. J Agric Food Chem. 1997;45(6):2217–24. doi:10.1021/jf960947d.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Bavarian Science Foundation (Bayerische Forschungsstiftung, BFS) and support from Netzsch Gerätebau GmbH, Selb, Germany and Photonion GmbH, Neuherberg, Germany is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matuschek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, M., Wohlfahrt, S., Saraji-Bozorgzad, M. et al. Thermal analysis/evolved gas analysis using single photon ionization. J Therm Anal Calorim 113, 1667–1673 (2013). https://doi.org/10.1007/s10973-013-3143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3143-y

Keywords

Navigation