Skip to main content
Log in

Amorphous-to-crystalline transition in Te-doped Ge2Sb2Se5 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) was used to study crystallization in Ge2Sb2Se4.5Te0.5 glass under non-isothermal conditions. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study for a crystallization process was undertaken. In particular, the effect of Te ↔ Se substitution on the complexity of the crystallization process was analyzed. The addition of tellurium enhances bulk crystallization originating from volume nuclei at the expense of the surface/defects-based crystallization mechanism. Significantly higher activation energy in the case of the Te-doped material was attributed to the larger mass of the combined Se–Te chains and the larger spatial restrictions for their movement. On the other hand, the slightly lower crystallization temperature of the Te-doped glass corresponds to its higher tendency for crystallization. A supplemental X-ray diffraction study confirmed the findings obtained by DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chandel N, Mehta N. Thermal analysis for study of influence of Cd, In, and Sb on glass transition kinetics in glassy Se80Te20 alloy using DSC technique. J Therm Anal Calorim. 2014;115:1273–8.

    Article  CAS  Google Scholar 

  2. Sharda S, Sharma N, Sharma P, Sharma V. Glass transition and crystallization kinetics analysis of Sb–Se–Ge chalcogenide glasses. J Therm Anal Calorim. 2014;115:361–6.

    Article  CAS  Google Scholar 

  3. Kumar A, Barman PB, Sharma R. Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses. J Therm Anal Calorim. 2013;114:1003–13.

    Article  CAS  Google Scholar 

  4. Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90−x In10Sb x (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2013;114:195–203.

    Article  CAS  Google Scholar 

  5. Šiljegovič MV, Lukič-Petrovič SR, Štrbač GR, Petrovič DM. Kinetic analysis of the crystallization processes in the glasses of the Bi–As–S system. J Therm Anal Calorim. 2012;110:379–84.

    Article  Google Scholar 

  6. Hosni HM, Fayek SA, El-Sayed SM, Roushdy M, Soliman MA. Optical properties and DC electrical conductivity of Ge28−x Se72Sb x thin films. Vacuum. 2006;81:54–8.

    Article  CAS  Google Scholar 

  7. Sharma P, Rangra VS, Sharma P, Katyal SC. Far infrared study of amorphous Ge17−x Se83Sb x chalcogenide glasses. J Alloys Compd. 2009;480:934–7.

    Article  CAS  Google Scholar 

  8. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:824–32.

    CAS  Google Scholar 

  9. Raoux S, Burr GW, Breitwisch ML, et al. Phase-change random access memory: a scalable technology. IBM J Res Dev. 2008;52:465–79.

    Article  CAS  Google Scholar 

  10. Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  11. Avrami M. Kinetics of phase change. I—general theory. J Chem Phys. 1939;7:1103–12.

    CAS  Google Scholar 

  12. Avrami M. Kinetics of phase change. II—transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Google Scholar 

  13. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Google Scholar 

  14. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–42.

    Google Scholar 

  15. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se–Te glassy system. J Non-cryst Solids. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  16. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  17. Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2013;111:161–71.

    Article  CAS  Google Scholar 

  18. Svoboda R, Málek J. Particle size influence on crystallization behavior of Ge2Sb2Se5 glass. J Non-cryst Solids. 2012;358:276–84.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  20. Svoboda R, Málek J. Crystallization kinetics of amorphous Se. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-012-2922-1.

    Google Scholar 

  21. Findoráková L, Svoboda R. Kinetic analysis of the thermal decomposition of Zn(II) 2-chlorobenzoate complex with caffeine. Thermochim Acta. 2012;543:113–7.

    Article  Google Scholar 

  22. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  23. Málek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  Google Scholar 

  24. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  25. JCPDS PDF-2 database, release 54. Newtown Square: International Center for Diffraction Data; 2004.

  26. ICSD database, release 2012/2. Karlsruhe: FIZ; 2012.

  27. Ray CS, Day DE. Identifying internal and surface crystallization by differential thermal analysis for the glass-to-crystal transformations. Thermochim Acta. 1996;280/281:163–74.

    Article  CAS  Google Scholar 

  28. Pérez-Maqueda LA, Criado JM, Málek J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-cryst Solids. 2003;320:84–91.

    Article  Google Scholar 

  29. Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex processes. J Therm Anal Calorim. 2013;111:1045–56.

    Article  CAS  Google Scholar 

  30. Matsunaga T, Kojima R, Yamada N. Structural analysis of GeSbTeSe phase-change materials. Libr E\PCOS. 2009;2009:99–104.

    Google Scholar 

  31. Skowron A, Brown ID. Structure of antimony lead selenide Pb4Sb4Se10, a selenium analogue of cosalite. Acta Crystallogr. 1990;C46:2287–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under Project No. P106/11/1152. The authors also wish to thank to Petr Bezdička who performed the XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Svoboda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, R., Málek, J. Amorphous-to-crystalline transition in Te-doped Ge2Sb2Se5 glass. J Therm Anal Calorim 117, 1073–1083 (2014). https://doi.org/10.1007/s10973-014-3910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3910-4

Keywords

Navigation