Skip to main content
Log in

Influence of the structural characteristic of pyrolysis products on thermal stability of styrene-butadiene rubber composites reinforced by different particle sized kaolinites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  2. Lagaly G. Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl Clay Sci. 1999;15:1–9.

    Article  CAS  Google Scholar 

  3. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568–71.

    Article  CAS  Google Scholar 

  4. Choudalakis G, Gotsis AD. Permeability of polymer/clay nanocomposites: a review. Eur Polym J. 2009;45:967–84.

    Article  CAS  Google Scholar 

  5. Varghese S, Karger-Kocsis J. Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer. 2003;44:4921–7.

    Article  CAS  Google Scholar 

  6. Liu Q, Zhang Y, Xu H. Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci. 2008;42:232–7.

    Article  CAS  Google Scholar 

  7. Yahaya LE, Adebowale KO, Menon ARR. Mechanical properties of organomodified kaolin/natural rubber vulcanizates. Appl Clay Sci. 2009;46:283–8.

    Article  CAS  Google Scholar 

  8. Zhang Y, Liu Q, Zhang Q, Lu Y. Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl Clay Sci. 2010;50:255–9.

    Article  CAS  Google Scholar 

  9. Gu Z, Song G, Liu W, Li P, Gao L, Li H, et al. Preparation and properties of styrene butadiene rubber/natural rubber/organo-bentonite nanocomposites prepared from latex dispersions. Appl Clay Sci. 2009;46:241–4.

    Article  CAS  Google Scholar 

  10. Vinay Kumar S, Prakash Chandra G. Silica–styrene-butadiene rubber filled hybrid composites: experimental characterization and modeling. J Reinf Plast Compos. 2010;29:2450–68.

    Article  Google Scholar 

  11. Shi D, Yu W, Li RKY, Ke Z, Yin J. An investigation on the dispersion of montmorillonite (MMT) primary particles in PP matrix. Eur Polym J. 2007;43:3250–7.

    Article  CAS  Google Scholar 

  12. Rybiński P, Janowska G. Thermal stability and flammability of nanocomposites made of diene rubbers and modified halloysite nanotubes. J Therm Anal Calorim. 2013;113:31–41.

    Article  Google Scholar 

  13. Janowska G, Kucharska-Jastrząbek A, Rybiński P. Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.

    Article  CAS  Google Scholar 

  14. Xia X, Zeng X, Liu J, Xu W. Preparation and characterization of epoxy/kaolinite nanocomposites. J Appl Polym Sci. 2010;118:2461–6.

    CAS  Google Scholar 

  15. Gardolinski JE, Carrera LCM, Cantão MP, Wypych F. Layered polymer–kaolinite nanocomposites. J Mater Sci. 2000;35:3113–9.

    Article  CAS  Google Scholar 

  16. Stephen R, Ranganathaiah C, Varghese S, Joseph K, Thomas S. Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer. 2006;47:858–70.

    Article  CAS  Google Scholar 

  17. Mohan TP, Kuriakose J, Kanny K. Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadine rubber (NR–SBR). J Ind Eng Chem. 2011;17:264–70.

    Article  CAS  Google Scholar 

  18. Kannan M, Bhagawan SS, Thomas S, Joseph K. Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim. 2013;112:1231–44.

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang Q, Liu Q, Cheng H, Frost R. Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler. J Therm Anal Calorim. 2014;115:1013–20.

    Article  CAS  Google Scholar 

  20. Chen S, Yu H, Ren W, Zhang Y. Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim Acta. 2009;491:103–8.

    Article  CAS  Google Scholar 

  21. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  CAS  Google Scholar 

  22. Rybiński P, Janowska G, Jóźwiak M, Pająk A. Thermal properties and flammability of nanocomposites based on diene rubbers and naturally occurring and activated halloysite nanotubes. J Therm Anal Calorim. 2012;107:1243–9.

    Article  Google Scholar 

  23. Rybiński P, Janowska G, Jóźwiak M, Jóźwiak M. Thermal stability and flammability of styrene–butadiene rubber (SBR) composites. J Therm Anal Calorim. 2013;113:43–52.

    Article  Google Scholar 

  24. Reich S, Thomsen C. Raman spectroscopy of graphite. Philos Trans. 2004;362:2271–88.

    Article  CAS  Google Scholar 

  25. Potgieter-Vermaak S, Maledi N, Wagner N, Van Heerden JHP, Van Grieken R, Potgieter JH. Raman spectroscopy for the analysis of coal: a review. J Raman Spectrosc. 2011;42:123–9.

    Article  CAS  Google Scholar 

  26. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–107.

    Article  CAS  Google Scholar 

  27. Caglar B, Çırak Ç, Tabak A, Afsin B, Eren E. Covalent grafting of pyridine-2-methanol into kaolinite layers. J Mol Struct. 2013;1032:12–22.

    Article  CAS  Google Scholar 

  28. Cheng H, Liu Q, Yang J, Frost RL. Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta. 2010;507–508:84–90.

    Article  Google Scholar 

  29. Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    Article  CAS  Google Scholar 

  30. Durga G, Narula A. Curing and thermal behaviour of diamide–diimide–diamines based on l-phenylalanine with epoxy blends containing phosphorus/silicon. J Therm Anal Calorim. 2012;109:345–53.

    Article  CAS  Google Scholar 

  31. Ptáček P, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208:20–5.

    Article  Google Scholar 

  32. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–7.

    Article  Google Scholar 

  33. Chen M, Ao N-J, Liao Y–Y, Chen Y, Zhou H-L. Thermooxidative degradation of natural rubber/clay composite. J Appl Polym Sci. 2006;100:3809–15.

    Article  CAS  Google Scholar 

  34. Ramesan MT. Thermogravimetric analysis, flammability and oil resistance properties in natural rubber and dichlorocarbene modified styrene butadiene rubber blends. React Funct Polym. 2004;59:267–74.

    Article  CAS  Google Scholar 

  35. Zhang Y, Kang X, Tan J, Frost RL. Influence of calcination and acidification on structural characterisation of Anyang anthracites. Energy Fuels. 2013;27:7191–7.

    Article  CAS  Google Scholar 

  36. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 2005;43:1731–42.

    Article  CAS  Google Scholar 

  37. Vidano RP, Fischbach DB, Willis LJ, Loehr TM. Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981;39:341–4.

    Article  CAS  Google Scholar 

  38. Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD. Raman microprobe studies on carbon materials. Carbon. 1994;32:1523–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation Project of China (51034006 and 51104060), the Opening Project of Henan Key Discipline Open Laboratory of Mining Engineering Materials (MEM11-2), and the Ph.D. programs foundation of Henan Polytechnic University (648273) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yude Zhang or Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Q., Xiang, J. et al. Influence of the structural characteristic of pyrolysis products on thermal stability of styrene-butadiene rubber composites reinforced by different particle sized kaolinites. J Therm Anal Calorim 117, 1201–1210 (2014). https://doi.org/10.1007/s10973-014-3905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3905-1

Keywords

Navigation