Skip to main content
Log in

Thermal behaviour of graphene nanoplatelets and multiwalled carbon nanotubes filled-glass fibre-reinforced epoxy composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of thermal behaviour on graphene nanoplatelets (GP) and multiwalled carbon nanotube (CN) nanofillers of glass fibre (GL)-reinforced epoxy composites were investigated. The paper aims at evaluating, through a single and hybrid carbon-based nanofiller on the thermal stability, mechanical properties, electromechanical properties at elevated temperature, and morphologies of the composites. The nanofillers were dispersed using a mechanical stirrer, Thinky mixer, and ultrasonic probe. Hand lay-up and vacuum bagging techniques were used in the manufacturing of composites. Real-time self-monitoring of the structural damage to the specimens under tensile and flexural tests was performed through electromechanical measurements. Using the GP–CN hybrid in the composite improved the adhesion between the hybrid nanofillers and matrix. The thermal properties of GP–GL, CN–GL, and GP–CN–GL hybrid composites increased with the hybrid nanofiller addition. Mechanical testing at elevated temperatures revealed a higher rate of strength degradation for the 1.5-mass% GP–CN–GL hybrid composite than for a single nanofiller composite. The GP–CN–GL hybrid composites exhibited a more pronounced nonlinear behaviour and lower resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 2015;21:11–25.

    Article  CAS  Google Scholar 

  2. Nag A, Mitra A, Mukhopadhyay SC. Graphene and its sensor-based applications: a review. Sensors Actuators A Phys. 2018;270:177–94.

    Article  CAS  Google Scholar 

  3. Sam-Daliri O, Faller L-M, Farahani M, Roshanghias A, Oberlercher H, Mitterer T, Araee A, Zangl H. MWCNT–epoxy nanocomposite sensors for structural health monitoring. Electronics. 2018;7:143.

    Article  CAS  Google Scholar 

  4. Rasana N, Jayanarayanan K, Deeraj BDS, Joseph K. The thermal degradation and dynamic mechanical properties modelling of MWCNT/glass fibre multiscale filler reinforced polypropylene composites. Compos Sci Technol. 2019;169:249–59.

    Article  CAS  Google Scholar 

  5. Inuwa IM, Arjmandi R, Ibrahim AN, Haafiz MKM, Wong SL, Majeed K, Hassan A. Enhanced mechanical and thermal properties of hybrid graphene nanoplatelets/multiwall carbon nanotubes reinforced polyethylene terephthalate nanocomposites. Fibres Polym. 2016;17:1657–66.

    Article  CAS  Google Scholar 

  6. Guadagno L, Naddeo C, Raimondo M. Thermal, mechanical and electrical performance of structural epoxy resins filled with carbon nanoFibres. J Therm Anal Calorim. 2023;148:13095–106.

    Article  CAS  Google Scholar 

  7. Guadagno L, Naddeo C, Sorrentino A, Raimondo M. Thermo-mechanical performance of epoxy hybrid system based on carbon nanotubes and graphene nanoparticles. Nanomaterials. 2023;13:2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Saleh MH. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met. 2015;209:41–6.

    Article  CAS  Google Scholar 

  9. Al-Bahrani M, Gombos ZJ, Cree A. Investigation of the constancy of the MWCNTs on the fibres surface for manufactured self-sensing composites. Compos Part B Eng. 2019;173: 106998.

    Article  Google Scholar 

  10. Ahmad MAA, Mohd Jamir MR, Abdul Majid MS, Refaai MRA, Meng CE, Abu Bakar M. Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes. Nanotechnol Rev. 2022;11:1977–90.

    Article  CAS  Google Scholar 

  11. Bouhamed A, Al-Hamry A, Müller C, Choura S, Kanoun O. Assessing the electrical behaviour of MWCNTs/epoxy nanocomposite for strain sensing. Compos Part B Eng. 2017;128:91–9.

    Article  CAS  Google Scholar 

  12. E1131 A. Standard test method for compositional analysis by thermogravimetry. ASTM Int. 2015;08:6.

  13. D5418 A. Standard test method for plastics: dynamic mechanical properties: in flexure (three-point bending). ASTM Int. 2007;D5023:20–23.

  14. Ahmad MAA, Abdul Majid MS, Ridzuan MJM, Mazlee MN, Gibson AG. Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites. Constr Build Mater. 2018;179:265–76.

    Article  CAS  Google Scholar 

  15. D3039 A. Standard test method for tensile properties of polymer matrix composite materials. 2014;1–13.

  16. D7264 A. Standard test method for flexural properties of polymer matrix composite materials. 2014;1–10.

  17. Wang Y, Wang Y, Wan B, Han B, Cai G, Chang R. Strain and damage self-sensing of basalt fibre reinforced polymer laminates fabricated with carbon nanoFibres/epoxy composites under tension. Compos Part A Appl Sci Manuf. 2018;113:40–52.

    Article  Google Scholar 

  18. Moriche R, Sánchez M, Jiménez-Suárez A, Prolongo SG, Ureña A. Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol. 2016;123:65–70.

    Article  CAS  Google Scholar 

  19. Dhakal HN, Zhang ZY, Bennett N. Influence of fibre treatment and glass fibre hybridisation on thermal degradation and surface energy characteristics of hemp/unsaturated polyester composites. Compos Part B. 2012;43:2757–61.

    Article  CAS  Google Scholar 

  20. Reddy SK, Kumar S, Varadarajan KM, Marpu PR, Gupta TK, Choosri M. Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites. Mater Sci Eng C. 2018;92:957–68.

    Article  CAS  Google Scholar 

  21. Moosa AA, Ahmad Ramazani SA, Faris Abdul Karim Kubba MR. Synergetic effects of graphene and nonfunctionalized carbon nanotubes hybrid reinforced epoxy matrix on mechanical, thermal and wettability properties of nanocomposites. Am J Mater Sci. 2017;7:1–11.

    Google Scholar 

  22. Jojibabu P, Ram GDJ, Deshpande AP, Bakshi SR. Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal ageing. Polym Degrad Stab. 2017;140:84–94.

    Article  CAS  Google Scholar 

  23. Ajorloo M, Fasihi M, Ohshima M, Taki K. How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller? Mater Des. 2019;181: 108068.

    Article  CAS  Google Scholar 

  24. Samsudin SS, Majid MSA, Ridzuan MJM, Osman AF. Thermal polymer composites of hybrid fillers. IOP Conf Ser Mater Sci Eng. 2019;670: 012037.

    Article  CAS  Google Scholar 

  25. Paleari L, Bragaglia M, Fabbrocino F, Nanni F. Structural monitoring of glass fibre/epoxy laminates by means of carbon nanotubes and carbon black self-monitoring plies. Nanomaterials. 2021;11:1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Militký J, Jabbar A. Comparative evaluation of fibre treatments on the creep behaviour of jute/green epoxy composites. Compos Part B Eng. 2015;80:361–8.

    Article  Google Scholar 

  27. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M. Thermal and dynamic mechanical properties of cellulose nanoFibres reinforced epoxy composites. Int J Biol Macromol. 2017;102:822–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bragaglia M, Paleari L, Lamastra FR, Puglia D, Fabbrocino F, Nanni F. Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings. J Reinf Plast Compos. 2021;40:632–43.

    Article  CAS  Google Scholar 

  29. Arribas C, Prolongo MG, Sánchez-Cabezudo M, Moriche R, Prolongo SG. Hydrothermal ageing of graphene/carbon nanotubes/epoxy hybrid nanocomposites. Polym Degrad Stab. 2019;170: 109003.

    Article  Google Scholar 

  30. Paran SMR, Naderi G, Javadi F, Shemshadi R, Saeb MR. Experimental and theoretical analyses on mechanical properties and stiffness of hybrid graphene/graphene oxide reinforced EPDM/NBR nanocomposites. Mater Today Commun. 2020;22: 100763.

    Article  CAS  Google Scholar 

  31. Esmaeili A, Sbarufatti C, Ma D, Manes A, Jiménez-Suárez A, Ureña A, Dellasega D, Hamouda AMS. Strain and crack growth sensing capability of SWCNT reinforced epoxy in tensile and mode I fracture tests. Compos Sci Technol. 2020;186: 107918.

    Article  CAS  Google Scholar 

  32. Namdev A, Telang A, Purohit R. Experimental investigation on mechanical and wear properties of GNP/Carbon fibre/epoxy hybrid composites. Mater Res Express. 2022;9: 025303.

    Article  Google Scholar 

  33. Wan Ramli WMA, Abdul Majid MS, Ridzuan MJM, Sultan MTH, Amin NAM, Gibson AG. The effect of nanomodified epoxy on the tensile and flexural properties of Napier fibre reinforced composites. Polym Compos. 2020;41:824–37.

    Article  CAS  Google Scholar 

  34. Zhou A, Qin R, Chow CL, Lau D. Bond integrity of aramid, basalt and carbon fibre reinforced polymer bonded wood composites at elevated temperature. Compos Struct. 2020;245: 112342.

    Article  Google Scholar 

  35. Shukla MK, Sharma K. Effect of functionalized graphene/CNT ratio on the synergetic enhancement of mechanical and thermal properties of epoxy hybrid composite. Mater Res Express. 2019;6: 085318.

    Article  CAS  Google Scholar 

  36. Shen JT, Buschhorn ST, De Hosson JTM, Schulte K, Fiedler B. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Compos Sci Technol. 2015;115:1–8.

    Article  CAS  Google Scholar 

  37. Sarath Kumar P, Jayanarayanan K, Balachandran M. Thermal and mechanical behaviour of functionalized MWCNT reinforced epoxy carbon fabric composites. Mater Today Proc. 2020;24:1157–66.

    Article  CAS  Google Scholar 

  38. Yazik MHM, Sultan MTH, Mazlan N, Talib ARA, Naveen J, Shah AUM, Safri SNA. Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite. J Mater Res Technol. 2020;9:6085–100.

    Article  CAS  Google Scholar 

  39. Nuruddin M, Hosur M, Gupta R, Hosur G, Tcherbi-Narteh A, Jeelani S. Cellulose nanoFibres-graphene nanoplatelets hybrids nanofillers as high-performance multifunctional reinforcements in epoxy composites. Polym Polym Compos. 2017;25:273–84.

    CAS  Google Scholar 

  40. Xiang D, Wang L, Tang Y, Harkin-Jones E, Zhao C, Wang P, Li Y. Damage self-sensing behaviour of carbon nanofiller reinforced polymer composites with different conductive network structures. Polymer (Guildf). 2018;158:308–19.

    Article  CAS  Google Scholar 

  41. Harizi W, Azzouz R, Martins AT, Hamdi K, Aboura Z, Khellil K. Electrical resistance variation during tensile and self-heating tests conducted on thermoplastic polymer-matrix composites. Compos Struct. 2019;224: 111001.

    Article  Google Scholar 

  42. Luan C, Yao X, Zhang C, Fu J, Wang B. Integrated self-monitoring and self-healing continuous carbon fibre reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos Sci Technol. 2020;188: 107986.

    Article  CAS  Google Scholar 

  43. Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett. 2012;101: 063112.

    Article  Google Scholar 

  44. Wang X, Meng S, Tebyetekerwa M, Li Y, Pionteck J, Sun B, Qin Z, Zhu M. Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fibre. Compos A Appl Sci Manuf. 2018;105:291–9.

    Article  CAS  Google Scholar 

  45. Suherman H, Dweiri R, Mahyoedin Y, Duskiardi D. Investigation of electrical-mechanical performance of epoxy-based nanocomposites filled with hybrid electrically conductive fillers. Mater Res Express. 2019;6: 115010.

    Article  CAS  Google Scholar 

  46. Ridzuan MJM, Majid MSA, Afendi M, Mazlee MN, Gibson AG. Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos Struct. 2016;152:850–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Faculty of Mechanical Engineering Technology and Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP) for the equipment and technical assistance in conducting this research.

Funding

This study was funded by the Ministry of Higher Education, Malaysia through the Fundamental Research Grant Scheme (Ref: FRGS/1/2021/STG05/UNIMAP/02/3).

Author information

Authors and Affiliations

Authors

Contributions

MJMR and MAAA: designed the entire story in this manuscript, performed all tests and data analysis. MSAM, SMS, MSI and ZMR: were designed and revised the manuscript. All authors discussed the methods, results and checked the manuscripts.

Corresponding author

Correspondence to M. J. M. Ridzuan.

Ethics declarations

Conflict of interest

Mohd Shihabudin Ismail has received research grants from the Ministry of Higher Education, Malaysia through the Fundamental Research Grant Scheme.

Research data related to this submission

There are no linked research data sets for this submission. Data will be made available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.A.A., Ridzuan, M.J.M., Majid, M.S.A. et al. Thermal behaviour of graphene nanoplatelets and multiwalled carbon nanotubes filled-glass fibre-reinforced epoxy composites. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13195-4

Keywords

Navigation