Skip to main content
Log in

Growth and characterization of semiorganic NLO crystal of l-glutamic acid hydrochlorobromide (LGHCB)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Single crystals of nonlinear optical material l-glutamic acid hydrochlorobromide (LGHCB) were grown by slow evaporation technique from its aqueous solution. Optically good quality crystals of dimension 20 × 10 × 2 mm3 were obtained. The lattice parameters for the grown crystals were determined using single crystal X-ray diffraction study. The LGHCB crystal belongs to non-centrosymmetric P212121 space group. The crystal structure was resolved by direct method and refined by full matrix least-square method using SHELXL-97. Using the powder X-ray diffraction study, the crystallinity of the grown crystal was confirmed and the diffraction peaks are indexed. From Fourier transform infrared spectroscopy study, the various functional groups present in LGHCB crystal were elucidated. The UV–Vis-NIR absorption spectrum was recorded in the range of 200–2,000 nm, and the lower cut off wavelength is ~235 nm. Optical band gap of the grown crystal was found to be 5.22 eV. Thermal properties of LGHCB crystal were studied by thermogravimetric analysis and derivative thermogravimetric analysis. The second harmonic generation efficiency of LGHCB crystal was confirmed by Kurtz’s powder technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Riscob B, Shakir M, Ganesh V, Vijayan N, Wahab MA, Bhagavannarayana G. Growth optical, mechanical and thermal studies of diglycine cadmium chloride single crystal. J Therm Anal Calorim. 2012;110(3):1225–32.

    Article  CAS  Google Scholar 

  2. Petrosyan AM. Salts of l-histidine as nonlinear optical materials: a review. J Cryst Phys Chem. 2010;1(1):33–56.

    CAS  Google Scholar 

  3. Fleck M. Compounds of glycine with halogen or metal halogenides: review and comparison. Z Kristallogr. 2008;223:222–32.

    CAS  Google Scholar 

  4. Bhat MN, Dharmaprakash SM. Growth of nonlinear optical γ-glycine crystals. J Cryst Growth. 2002;236:376–80.

    Article  CAS  Google Scholar 

  5. Malliga P, Alosious Gonsago C, Sagayaraj P, Joseph Arul Pragasam A. Crystal growth, spectral, optical, and thermal characterization of glycyl-l-alanine hydrochloride (GLAH) single crystal. J Therm Anal Calorim. 2012;110(2):873–8.

    Article  CAS  Google Scholar 

  6. Chen C, Ye N, Lin J, Jiang J, Zeng W, Wu B. Computer-assisted search for nonlinear optical crystals. Adv Mater. 1999;11:1071–8.

    Article  CAS  Google Scholar 

  7. Petrosyan AM, Karapetyan HA, Ghazaryan VV. Proceedings of Conference ‘Laser Physics 2008’, 14–17 Oct 2008; Ashtarak, Armenia 2009;63–6.

  8. Pal Tanusri, Kar Tanusree, Wang Xin-Qiang, Zhou Guang-Ying, Wang Dong, Cheng Xiu-Feng, Yang Zhao-He. Growth and characterization of nonlinear optical material, LAHClBr—a new member of l-arginine halide family. J Cryst Growth. 2002;235:523–8.

    Article  CAS  Google Scholar 

  9. Thomas PC, Aruna S, Anuradha A, Packiam Julius J, Joseph Arul Pragasam A, Sagayaraj P. Growth and characterization of semiorganic NLO crystals of LAHClBr. Cryst Res Technol. 2006;41(12):1231–5.

    Article  CAS  Google Scholar 

  10. Srinivasan N, Sridhar B, Rajaram RK. Hydrogen bis[l-lysinium(2+)] dichloride perchlorate. Acta Cryst. 2001;E57:o875–7.

    Google Scholar 

  11. Srinivasan N, Sridhar B, Rajaram RK. l-Lysine l-lysinium dichloride nitrate. Acta Cryst. 2001;E57:o888–90.

    Google Scholar 

  12. Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK. Bis(l-ornithinium) chloride nitrate sulfate. Acta Cryst. 2004;E60:o768–70.

    Google Scholar 

  13. Delfino M, Dougherty JP, Zwicker WK, Choy MM. Solution growth and characterization of L(+) glutamic acid hydrochloride single crystals. J Cryst Growth. 1976;36:267–72.

    Article  CAS  Google Scholar 

  14. Sathyalakshmi R, Kannan V, Bairava Ganesh R, Ramasamy P. Synthesis, growth and characterization of single crystals of pure and thiourea doped l-glutamic acid hydrochloride. Cryst Res Technol. 2007;42(1):78–83.

    Article  CAS  Google Scholar 

  15. Zhang YJ, Shu Z, Xu W, Chen G, Li Z. l-Glutamic acid hydrochloride at 153 K. Acta Cryst. 2008;E64:o446.

    Google Scholar 

  16. Delfino M, Loiacono GM, Nicolosi JA. Halide effect in L(+) glutamic acid halogen acid salts. J Solid State Chem. 1978;23:289–96.

    Article  CAS  Google Scholar 

  17. Natarajan S, Chitra GP, Martin Britto Dhas SA, Athimoolam S. Growth, structural, thermal and optical studies on l-glutamic acid hydrobromide: a new semiorganic NLO material. Cryst Res Technol. 2008;43(7):713–9.

    Article  CAS  Google Scholar 

  18. Kumararaman S, Kirubavathi K, Selvaraju K. Growth and Characterization of l-glutamic acid hydro chloro bromide, a new nonlinear optical material. J Miner Mater Charact Eng. 2011;10(1):49–57.

    Google Scholar 

  19. Bosshard Ch, Sutter K, Pretre Ph, Hulligher J, Flőrsheimer M, Kaatz P, Gűnter P. Organic nonlinear optical materials. Basel: Gordan and Breach Publishers; 1995.

    Google Scholar 

  20. Tanaka Y, Matsuoka M. Selection of solvents for organic crystal growth from solution. J Cryst Growth. 1990;99:1130.

    Article  CAS  Google Scholar 

  21. Rajendran KV, Jayaraman D, Jayavel R, Mohan Kumar R, Ramasamy P. Growth and characterization of non-linear optical l-hystidine tetrafluoroborate (l-HFB) single crystals. J Cryst Growth. 2001;224:122–7.

    Article  CAS  Google Scholar 

  22. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  23. Mohan Jag. Organic spectroscopy principles and applications. New Delhi: Narosa Publishing House; 2005.

    Google Scholar 

  24. Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5:3144.

    Article  Google Scholar 

  25. Ashour A, El-Kadry N, Mahmoud SA. On the electrical and optical properties of CdS films thermally deposited by a modified source. Thin Solid Films. 1995;269:117–20.

    Article  CAS  Google Scholar 

  26. Chawla AK, Kaur D, Chandra R. Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering. Opt Mater. 2007;29(8):995–8.

    Article  CAS  Google Scholar 

  27. Rao KV, Smakula A. Temperature dependence of dielectric constant of alkali and thallium halide crystals. J Appl Phys. 1965;36:3953–4.

    Article  CAS  Google Scholar 

  28. Eya DDO, Ekpunobi AJ, Okeke CE. Influence of thermal annealing on the optical properties of tin oxide thin films prepared by chemical bath deposition technique. Acad Open Internet J. 2006;17:1–10.

    Google Scholar 

  29. Bairava Ganesh R, Kannan V, Sathyalakshmi R, Ramasamy P. The growth of l-glutamic acid hydrochloride crystals by Sankaranarayanan–Ramasamy (SR) method. Mater Lett. 2007;61(3):706–8.

    Article  Google Scholar 

  30. Anicete-Santos M, Picon FC, Escote MT, Leite ER, Pizani PS, Varela JA, Longo E. Room-temperature photoluminescence in structurally disordered SrWO4. Appl Phys Lett. 2006;88:211913.

    Article  Google Scholar 

  31. Orhan E, Anicete-Santos M, Maurera MA, Pontes FM, Paiva-Santos CO, Souza AG, Varela JA, Pizani PS, Longo E. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder. Chem Phys. 2005;312:1–9.

    CAS  Google Scholar 

  32. Cavalcante LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E. Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces. Chem Eng J. 2008;143:299–307.

    Article  CAS  Google Scholar 

  33. SenthilPandian M, Pattanaboonmee N, Ramasamy P, Manyum P. Studies on conventional and Sankaranarayanan–Ramasamy (SR) method grown ferroelectric glycine phosphite (GPI) single crystals. J Cryst Growth. 2011;314:207–12.

    Article  CAS  Google Scholar 

  34. Senthil Pandian M, Ramasamy P, Kumar Binay. A comparative study of ferroelectric triglycine sulfate (TGS) crystals grown by conventional slow evaporation and unidirectional method. Mater Res Bull. 2012;47:1587–97.

    Article  CAS  Google Scholar 

  35. Senthil Pandian M, Boopathi K, Ramasamy P, Bhagavannarayana G. The growth of benzophenone crystals by Sankaranarayanan–Ramasamy (SR) method and slow evaporation solution technique (SEST): a comparative investigation. Mater Res Bull. 2012;47:826–35.

    Article  CAS  Google Scholar 

  36. Senthil Pandian M, Ramasamy P. Sodium sulfanilate dihydrate (SSDH) single crystals grown by conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method and its comparative characterization analysis. Mater Chem Phys. 2012;132:1019–28.

    CAS  Google Scholar 

  37. Sczancoski JC, Cavalcante LS, Joya MR, Varela JA, Pizani PS, Longo E. SrMoO4 powders processed in microwave-hydrothermal: synthesis, characterization and optical properties. Chem Eng J. 2008;140:632.

    Article  CAS  Google Scholar 

  38. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys. 1968;39:3798–813.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai for conducting XRD, UV, FTIR studies and Prof. P. K. Das, Indian Institute of Science, Bangalore for support in SHG measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Uma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uma, J., Rajendran, V. Growth and characterization of semiorganic NLO crystal of l-glutamic acid hydrochlorobromide (LGHCB). J Therm Anal Calorim 117, 1157–1163 (2014). https://doi.org/10.1007/s10973-014-3898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3898-9

Keywords

Navigation