Skip to main content
Log in

Synthesis, growth, physio‐chemical and Hirshfeld surface analysis of guanidinium l-glutamate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a novel Guanidinium l-glutamate (GLG) optically transparent single crystal has been synthesized and grown by slow solvent evaporation method for the first time is reported. Single crystal X-ray diffraction demonstrates that the GLG crystallizes in non-centrosymmetric monoclinic crystal with P21 space group. The different functional groups present in the grown crystal were found by Fourier transform infrared analysis. The optical properties of the grown crystal such as absorbance, laser damage threshold have been studied. The bandgap energy of the crystal was found to be 4.66 eV. Thermal properties of GLG crystalline samples were analyzed using Thermogravimetry/Differential Thermal Analysis. Further, the material is characterized by Hirshfeld surface analysis to analyze and interrupt the intermolecular interactions of GLG. Scanning Electron Microscope (SEM) studies were carried out to study the surface morphology of the grown crystal. By using Kurtz-Perry powder technique second harmonic generation and particle size dependency was carried out for the title compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zinatloo-Ajabshir et al., Enhanced visible-light-driven photocatalytic performance for the degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple, and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  2. M. Mousavi-Kamazani et al., One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci.: Mater. Electron. 31, 17332–17338 (2020)

    Google Scholar 

  3. G. Palani, V. Chithambaram, A study on structural, microhardness, dielectric and antimicrobial properties of TSMnAc crystal. Mater. Res. Innov. (2020). https://doi.org/10.1080/14328917.2020.1772448

    Article  Google Scholar 

  4. S. Zinatloo-Ajabshir et al., Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir et al., Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir et al., Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020)

    Article  CAS  Google Scholar 

  7. G. Palani, S. Shanmugan, Growth, characterization and antibacterial activity of LHCdBr single crystal. Mater. Res. Innov. (2020). https://doi.org/10.1080/14328917.2020.1814028

    Article  Google Scholar 

  8. S. Zinatloo-Ajabshir et al., Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  9. S. Zinatloo-Ajabshir et al., Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020)

    Article  CAS  Google Scholar 

  10. S. Zinatloo-Ajabshir et al., Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd. 791, 792–799 (2019)

    Article  CAS  Google Scholar 

  11. M.S. Morassaei et al., Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B 167, 643–653 (2019)

    Article  Google Scholar 

  12. M.S. Morassaei et al., Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci.: Mater. Electron. 27, 11698–11706 (2016)

    CAS  Google Scholar 

  13. V. Chithambaram et al., Growth and investigation of a novel nonlinear optical single crystal of urea potassium dichromate by solution growth technique for photonic application. J. Opt. 49(2), 181–186 (2020)

    Article  Google Scholar 

  14. R. Hanumanthrao, S. Kalainathan, Studies on structural, thermal, and optical properties of novel NLO crystal bis l-glutamine sodium nitrate. Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2012.01.051

    Article  Google Scholar 

  15. P. Geetha, S. Krishnan, R.K. Natarajan, V. Chithambaram, Growth and characterization of semi-organic nonlinear optical l-Valine Ferric Chloride single crystal by solution growth technique. Curr. Appl. Phys. 15(3), 201–207 (2016)

    Article  Google Scholar 

  16. S.A. Heidari-Asil et al., Amino acid assisted-synthesis and characterization of magnetically retrievable ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven photocatalyst. Int. J. Hydrogen Energy 45(43), 22761–22774 (2020)

    Article  CAS  Google Scholar 

  17. S. Rajeswari, G. Palani, Growth and investigations of 3rd order NLO properties of novel semi organic tartaric acid lithium sulfate single crystal for photonics application. Opt. Quant. Electron. 52(8), 1–10 (2020)

    Article  Google Scholar 

  18. X. Zeng, J. Li, B. Shen, Novel approach to recover cobalt and lithium from the spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 15(295), 112–118 (2015)

    Google Scholar 

  19. N. Saravanan et al., Investigation of third-order nonlinear optical semi-organic potassium bromide malate single crystals for optoelectronic applications. Mater. Today: Proceed. 30, 115–122 (2020)

    CAS  Google Scholar 

  20. A. Vijayalakshmi, V. Balraj, G. Peramaiyan, G. Vinitha, Synthesis, growth, structural and optical studies of a new organic three-dimension framework: 4-aminocarbonyl pyridinium hydrogen l-malate. J. Solid-State Chem. 4596, 30463–30467 (2016)

    Google Scholar 

  21. M.M. Abdel-Kader, F. El-Kabbani, S. Taha, A.M. Abosehly, K.K. Tahoon, A.A. El-Sharkawy, Thermal and electrical properties of ammonium tartrate. J. Phys. Chem. Solids 52, 655–658 (2001)

    Article  Google Scholar 

  22. F. Konrad, Z. Christoph, L.S. Heather, G. Murray, Diprotected triflylguanidines: a new class of guanidinylation reagents. J. Org. Chem. 63, 3804–3805 (1998)

    Article  Google Scholar 

  23. T. Rösener, K. Kröckert, A. Hoffmann, S. Herres-Pawlis, The curious case of a phenylated guanidinoquinoline ligand: synthesis, complexes and ATRP properties of DMEG6phqu. Z. Anorg. Allg. Chem. 644(21), 1317–1328 (2018)

    Article  Google Scholar 

  24. P. Geetha et al., Growth, spectroscopic, dielectric & electrical studies of glycine manganous acetate single crystal. Int. J. ChemTech Res. 9(No.07), 324–333 (2016)

    Google Scholar 

  25. A. Döring, U. Flörke, A. Hoffmann, M.D. Jones, D. Kuckling, J. Michaelis de Vasconcellos, S. Herres-Pawlis, Zinc complexes with guanidine-pyridine hybrid ligands: anion effect and catalytic activity. Z. Anorg. Allg. Chem. 641(12–13), 2147–2156 (2015)

    Article  Google Scholar 

  26. N. Shimaki, Interaction of urea and guanidine hydrochloride with lysozyme. J. Biochem. 70(3), 497–508 (1971)

    Article  CAS  Google Scholar 

  27. A. Jesser, M. Rohrmüller, W.G. Schmidt, S. Herres-Pawlis, Geometrical and optical benchmarking of copper guanidine–quinoline complexes: insights from TD-DFT and many-body perturbation theory†. J. Comput. Chem. 35(1), 1–17 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha Palani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arputhalatha, A., Anbuchezhiyan, M. & Palani, G. Synthesis, growth, physio‐chemical and Hirshfeld surface analysis of guanidinium l-glutamate single crystal. J Mater Sci: Mater Electron 32, 12503–12512 (2021). https://doi.org/10.1007/s10854-021-05884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05884-9

Navigation