Skip to main content
Log in

Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal oxidation degradation of styrene–butadiene rubber (SBR) was investigated by in situ FTIR, 2D-FTIR, and programming heating DSC. The results of analyses suggest that the degradation reaction is an autocatalytic process and mainly occurs on the aliphatic part instead of benzene pendants. Based on the results of in situ FTIR and 2D-FTIR, the oxidation process can be divided into three stages. In stage one, just two carbonyl peaks appear, namely 1,697 cm−1 (conjugate carbonyls) and 1,727 cm−1 (saturated carbonyls), and the generation speed is 1,697 > 1,727 cm−1. Yet the peaks appearing at 1,777 cm−1 belonged to peresters and anhydrides generating in stages two and three. The generation sequences are: 1,698 > 1,727 > 1,777 cm−1 for stage two; and 1,698 < 1,727 < 1,777 cm−1 for stage three. According to DSC results, the thermal oxidation of SBR contains four steps. The first step is the generation of alkyl radicals and the accumulation of hydroperoxide species. The second step is initial oxidation stage mainly producing conjugate carbonyls. The third step is deep oxidation process generating diverse carbonyls. The fourth is chain termination reaction, in which step the generation rates of anhydrides and peresters are the fastest due to bi-radical termination of alkoxy radicals and the consumption of conjugate carbonyl. Furthermore, crosslinking reactions occur during the whole thermal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Allen NS, Edge M, Wilkinson A, Liauw CM, Mourelatou D, Barrio J, Martínez-Zaportab MA. Degradation and stabilisation of styrene-ethylene-butadiene-styrene (SEBS) block copolymer. Polym Degrad Stab. 2000;71:113–22.

    Article  Google Scholar 

  2. Allen NS, Barcelona A, Edge M, Wilkinson A, Merchan CG, Santa Quiteria VR. Thermal and photooxidation of high styrene-butadiene copolymer (SBC). Polym Degrad Stab. 2004;86:11–23.

    Article  CAS  Google Scholar 

  3. Munteanu SB, Brebu M, Vasile C. Thermal and thermo-oxidative behaviour of butadiene-styrene copolymers with different architectures. Polym Degrad Stab. 2005;89:501–12.

    Article  CAS  Google Scholar 

  4. Schnabel W, Levchik GF, Wilkie CA, Jiang DD, Levchik SV. Thermal degradation of polystyrene, poly(1,4-butadiene) and copolymers of styrene and 1,4-butadiene irradiated under air or argon with 60Co-γ-rays. Polym Degrad Stab. 1999;63:365–75.

    Article  CAS  Google Scholar 

  5. Jiang DD, Levchik GF, Levchik SV, Wilkie CA. Thermal decomposition of cross-linked polybutadiene and its copolymers. Polym Degrad Stab. 1999;68:387–94.

    Article  CAS  Google Scholar 

  6. Saengsuwan S, Saikrasun S. Thermal stability of styrene-(ethylene butylene)-styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube. J Therm Anal Calorim. 2012;110:1395–406.

    Article  CAS  Google Scholar 

  7. Wang J, Cai X. Kinetics study of thermal oxidative degradation of ABS containing flame retardant components. J Therm Anal Calorim. 2012;107:725–32.

    Article  CAS  Google Scholar 

  8. Arockiasamy A, Toghiani H, Oglesby D, Horstemeyer MF, Bouvard JL, King RL. TG–DSC–FTIR–MS study of gaseous compounds evolved during thermal decomposition of styrene-butadiene rubber. J Therm Anal Calorim. 2013;111:535–42.

    Article  CAS  Google Scholar 

  9. Noda I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl Spectrosc. 1993;47:1329–36.

    Article  CAS  Google Scholar 

  10. Noda I, Dowrey AE, Marcott C, Story GM. Generalized two-dimensional correlation spectroscopy. Appl Spectrosc. 2000;54:236–48.

    Article  Google Scholar 

  11. Noda I. Two-dimensional infrared spectroscopy. J Am Chem Soc. 1989;111:8116–8.

    Article  CAS  Google Scholar 

  12. Eads CD, Noda I. Generalized correlation NMR spectroscopy. J Am Chem Soc. 2002;124:1111–8.

    Article  CAS  Google Scholar 

  13. He Y, Wang GF, Cox J, Geng L. Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal Chem. 2001;73:2302–9.

    Article  CAS  Google Scholar 

  14. Jung YM, Czarnik-Matusewicz B, Ozaki Y. Two-dimensional infrared, two-dimensional raman, and two-dimensional infrared and Raman heterospectral correlation studies of secondary structure of β-Lactoglobulin in buffer solutions. J Phys Chem B. 2000;104:7812–7.

    Article  CAS  Google Scholar 

  15. Chae B, Lee SW, Ree M, Jung YM, Kim SB. Photoreaction and molecular reorientation in a Nanoscaled film of poly(methyl 4-(methacryloyloxy)cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy. Langmuir. 2003;19:687–95.

    Article  CAS  Google Scholar 

  16. 2Dshige (c) Shigeaki Morita, Kwansei-Gakuin University, 2004-2005.

  17. Mothé MG, Leite LFM, Mothé CG. Kinetic parameters of different asphalt binders by thermal analysis. J Therm Anal Calorim. 2011;106:679–84.

    Article  Google Scholar 

  18. Mothé CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.

    Article  Google Scholar 

  19. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B. 1969;7:41–6.

    CAS  Google Scholar 

  20. Lui ZH, Tian SLZ. Thermal analysis. Handbook of analytical chemistry. Peking: Chemical Industrial Publications; 2000.

    Google Scholar 

  21. Piloyan GO, Ryabchikov ID, Novikova OS. Determination of activation energies of chemical reactions by differential thermal analysis. Nature. 1966;212:1229.

    Article  CAS  Google Scholar 

  22. Rybińsk P, Janowska G, Kuberski S. Thermal properties of butaidiene–acrylonitrile rubbers. Polimery. 2003;48:183–7.

    Google Scholar 

  23. Janowska G, lusarski L. Thermal properties of cis-1,4-poly (butadiene). J Therm Anal Calorim. 2001;65:205–12.

    Article  CAS  Google Scholar 

  24. Bottino FA, Pasquale GD, Fabbri E, Orestano A, Pollicino A. Influence of montmorillonite nano-dispersion on polystyrene photo-oxidation. Polym Degrad Stab. 2009;94:369–74.

    Article  CAS  Google Scholar 

  25. Xu JB, Zhang AM, Zhou T, Cao XJ, Xie ZN. A study on thermal oxidation mechanism of styrene ebutadiene estyrene block copolymer (SBS). Polym Degrad Stab. 2007;92:1682–91.

    Article  CAS  Google Scholar 

  26. Jubete E, Liauw CM, Jacobson K, Allen NS. Degradation of carboxylated styrene butadiene rubber based water born paints. Part 1: Effect of talc filler and titania pigment on UV stability. Polym Degrad Stab. 2007;92:1611–21.

    Article  CAS  Google Scholar 

  27. Osawa Z, Nishimoto M, Otsuki H. Chemiluminescence from the isothermal oxidation of SBR and NBR elastomers. Polym Degrad Stab. 1997;57:69–75.

    Article  CAS  Google Scholar 

  28. Yang QZ. Contemporary rubber technology. Peking: Sinopec Publications; 1997.

    Google Scholar 

  29. Wang SM, Chang JR, Tsiang RCC. Infrared studies of thermal oxidative degradation of polystyrene-block polybutadiene-block-polystyrene thermoplastic elastomers. Polym Degrad Stab. 1996;52:51–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Science Foundation of China (Grant No. 51133005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Huang, G., Zheng, J. et al. Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. J Therm Anal Calorim 115, 647–657 (2014). https://doi.org/10.1007/s10973-013-3348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3348-0

Keywords

Navigation