Skip to main content
Log in

Kinetics study of thermal oxidative degradation of ABS containing flame retardant components

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal oxidative degradation kinetics of pure acrylonitrile–butadiene–styrene (ABS) and the flame-retarded ABS materials with intumescent flame retardant (IFR) were investigated using Kissinger, Flynn–Wall–Ozawa, and Horowitz–Metzger methods. The results showed that the degradation of all samples included two stages, the activation energy at the first stage decreased by the incorporation of these flame retardant components, while increased at the second stage. The activation energy order of the flame-retarded ABS samples at stage 2 illustrates the relationship between the composition of IFRs and their flame retardancy, FR materials with appropriate acid agent/char former ratio has higher activation energy and better flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Horacek H, Pieh S. The importance of intumescent systems for fire protection of plastic materials. Polym Int. 2000;49:1106–14.

    Article  CAS  Google Scholar 

  2. Gao M, Wu W, Yan Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605–8.

    Article  CAS  Google Scholar 

  3. Demir H, Arkıs E, Balköse D, Ülkü S. Synergistic effect of natural zeolites on flame retardant additives. Polym Degrad Stab. 2005;89:478–83.

    Article  CAS  Google Scholar 

  4. Anna P, Marosi Gy, Bourbigot S, Le Bras M, Delobel R. Intumescent flame retardant systems of modified rheology. Polym Degrad Stab. 2002;77:243–7.

    Article  CAS  Google Scholar 

  5. Chiu S-H, Wang W-K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. J Appl Polym Sci. 1998;67:989–95.

    Article  CAS  Google Scholar 

  6. Li B, Xu MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab. 2006;91:1380–6.

    Article  CAS  Google Scholar 

  7. CH Ke, Li J, Fang KY, Zhun QL, Yan Q, Wang YZ. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab. 2010;95:763–70.

    Article  Google Scholar 

  8. Dai JF, Li B. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene. J Appl Polym Sci. 2010;116:2157–65.

    CAS  Google Scholar 

  9. Liu Y, Feng ZQ, Wang Q. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11. Polym Compos. 2010;30:221–5.

    Article  CAS  Google Scholar 

  10. Almeras X, Dabrowski F, Bras ML, Delobel R, Bourbigot S, Marosi G, Anna P. Using polyamide 6 as charring agent in intumescent polypropylene formulations. II. Thermal degradation. Polym Degrad Stab. 2002;77:315–23.

    Article  CAS  Google Scholar 

  11. CX Lu, Chen T, Cai XF. Halogen-free intumescent flame retardant for ABS/PA6/SMA alloys. J Macromol Sci Phys. 2009;48:651–62.

    Article  Google Scholar 

  12. Lv P, Wang ZZ, Hu KL, Fan WC. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym Degrad Stab. 2005;90:523–34.

    Article  CAS  Google Scholar 

  13. Balabanovich AI. Thermal degradation study of intumescent additives: Pentaerythritol phosphate and its blend with melamine phosphate. Thermochim Acta. 2005;435:188–96.

    Article  CAS  Google Scholar 

  14. Halpern Y, Mott DM, Niswarder RH. Fire retardancy of thermoplastic materials by intumescence. Ind Eng Chem Prod Res Dev. 1984;23:233–8.

    Article  CAS  Google Scholar 

  15. Chen YH, Liu Y, Wang Q, Yin H, Aelmans N, Kierkels R. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio. Polym Degrad Stab. 2003;81:215–24.

    Article  CAS  Google Scholar 

  16. Chen Y, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab. 2007;92:280–91.

    Article  CAS  Google Scholar 

  17. Yang KK, Wang XL, Wang YZ, Wu B, Yin YD, Yang B. Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). Eur Polym J. 2003;39:1567–74.

    Article  CAS  Google Scholar 

  18. Jin WP, Sea CO, Hac PL, Hee TK, Kyong OY. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.

    Article  Google Scholar 

  19. Li LQ, Guan CX, Zhang AQ, Chen DH, Qing ZB. Thermal stabilities and thermal degradation kinetics of polyimides. Polym Degrad Stab. 2004;84:369–73.

    Article  CAS  Google Scholar 

  20. Sun JT, Huang YD, Gong GF, Cao HL. Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups. Polym Degrad Stab. 2006;91:339–46.

    Article  CAS  Google Scholar 

  21. Jun W, Liu Y, Cai X. Effect of a novel charring agent on thermal degradation and flame retardancy of acrylonitrile–butadiene–styrene. J Therm Anal Calorim. 2011;103:767–72.

    Article  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70A:487–9.

    Google Scholar 

  24. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  25. Horowitz HH, Metzger G. A new analysis of thermogravimetric data. Anal Chem. 1963;35:1464–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the generous financial support by the following grant: National Natural Sciences Foundation of China, Grant No. 50973066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-fu Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Cai, Xf. Kinetics study of thermal oxidative degradation of ABS containing flame retardant components. J Therm Anal Calorim 107, 725–732 (2012). https://doi.org/10.1007/s10973-011-1704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1704-5

Keywords

Navigation